notes on OEIS A007925 https://oeis.org/A007925
$\mathrm{a}(\mathrm{n})=n^{n+1}-(n+1)^{n}$ for $\mathrm{n} \geq 0$
by Mathew Englander

$$
\begin{array}{ll}
a(n)=A 111454(n+4)-1 & \text { https://oeis.org/A1111454 } \\
a(n)=A 055651(n, n+1) & \text { https://oeis.org/A055651 } \\
a(n)=A 220417(n+1, n), n \geq 1 & \text { https://oeis.org/A220417 } \\
a(n)=A 007778(n)-\text { A000169(n+1) } & \text { https://oeis.org/A007778 } \\
& \text { https://oeis.org/A000169 }
\end{array}
$$

Compare:

https://oeis.org/A166326
https://oeis.org/A099498
https://oeis.org/A141074
https://oeis.org/A174379
https://oeis.org/A123206
https://oeis.org/A045575
https://oeis.org/A082754

Prime $(\mathrm{n})^{\wedge}(\operatorname{prime}(\mathrm{n})+1)-(\operatorname{prime}(\mathrm{n})+1)^{\wedge}$ prime (n)
Semiprimes of the form A007925(n) $=n^{\wedge}(n+1)-(n+1)^{\wedge} n$
$a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n+1-(-1)^{\wedge} p(n+1)-(-1)^{\wedge}(n+1)$ where $p(i)=i$-th prime
$a(n)$ is the largest prime factor of $(n-1)^{\wedge} n-n^{\wedge}(n-1)$
Primes of the form $x^{\wedge} y-y^{\wedge} x$, for $x, y>1$
Nonnegative numbers of the form $x^{\wedge} y-y^{\wedge} x$, for $x, y>1$
Triangle read by rows: $T(n, k)=a b s(n \wedge k-k \wedge n), 1<=k<=n$

Theorems about divisibility of A007925
I. All a(n) are odd and
for n even, $\quad a(n) \equiv 3 \bmod 4$
for n odd and $n \neq 1$, $a(n) \equiv 1 \bmod 4$
II. Considering the values of n and $\mathrm{a}(\mathrm{n}) \bmod 6$:
for $\mathrm{n} \equiv 0,1,2$, or $3, \mathrm{a}(\mathrm{n}) \equiv 5$;
for $n \equiv 4, a(n) \equiv 3$;
for $n \equiv 5, a(n) \equiv 1$.
III. For $n \geq 0, a(n)+1$ is a multiple of $n^{\wedge} 2$.
IV. For n odd and $n \geq 3, a(n)-1$ is a multiple of $(n+1)^{\wedge} 2$; for n even and $n \geq 0, a(n)+1$ is a multiple of $(n+1)^{\wedge} 2$.

Theorem I proof.
Considering the powers of m mod 4 , we observe the following:
if $\mathrm{m} \equiv 0$ then $\mathrm{m}^{\wedge} \mathrm{k} \equiv 0$ for all $\mathrm{k} \geq 1$;
if $m \equiv 1$ then $\mathrm{m}^{\wedge} \mathrm{k} \equiv 1$ for all $\mathrm{k} \geq 0$;
if $m \equiv 2$ then $m^{\wedge} k \equiv 0$ for all $k \geq 2$;
if $m \equiv 3$ then $m^{\wedge} k \equiv 1$ for all even k and $m^{\wedge} k \equiv 3$ for all odd $k, k \geq 0$.
The cases $\mathrm{n}=0$ and $\mathrm{n}=1$ are trivial: $\mathrm{a}(0)=\mathrm{a}(1)=-1$ which is odd and \equiv 3 mod 4. So now suppose $n \geq 2$ and consider $a(n)$ mod 4:
if $n \equiv 0$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 0-1 \equiv 3$;
if $n \equiv 1$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 1-0 \equiv 1$;
if $n \equiv 2$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 0-1 \equiv 3$ (because n is
even);
if $n \equiv 3$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 1-0 \equiv 1$ (because $n+1$ is even).

Therefore all $a(n)$ are odd and for n even, $a(n) \equiv 3 \bmod 4$, and for n odd and $n \neq 1, a(n) \equiv 1 \bmod 4 . Q . E . D$.

Theorem II proof.
Considering the powers of m mod 6, we observe the following:
if $m \equiv 0$ then $m^{\wedge} k \equiv 0$ for all $k \geq 1$;
if $m \equiv 1$ then $m^{\wedge} k \equiv 1$;
if $m \equiv 2$ then $m^{\wedge} k \equiv 4$ for k even and $k \geq 2, m^{\wedge} k \equiv 2$ for k odd;
if $m \equiv 3$ then $m^{\wedge} k \equiv 3$ for all $k \geq 1$;
if $m \equiv 4$ then $m^{\wedge} k \equiv 4$ for all $k \geq 1$;
if $m \equiv 5$ then $m^{\wedge} k \equiv 1$ for k even, $m^{\wedge} k \equiv 5$ for k odd.
For the cases $n=0, n=1$, and $n=2$, we have $a(n)=-1 \equiv 5 \bmod 6$. Now suppose $n>2$ and consider n and $a(n) \bmod 6:$
if $n \equiv 0$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 0-1 \equiv 5$;
if $n \equiv 1$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 1-2 \equiv 5$ (because n is odd);
if $n \equiv 2$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 2-3 \equiv 5$ (because $n+1$ is
odd) ;
if $n \equiv 3$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 3-4 \equiv 5$;
if $n \equiv 4$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 4-1 \equiv 3$ (because n is even);
if $n \equiv 5$ then $a(n)=n^{\wedge}(n+1)-(n+1)^{\wedge} n \equiv 1-0 \equiv 1$ (because $n+1$ is even).

Therefore, considering the values of n and $a(n) \bmod 6:$
for $n \equiv 0,1,2$ or $3, a(n) \equiv 5$;
for $n \equiv 4, a(n) \equiv 3$;
for $n \equiv 5, a(n) \equiv 1$.
Q.E.D.

Theorem III proof.
For $n=0,1$, or 2 we have $a(n)+1=0$, which is a multiple of $n \wedge 2$. Now suppose $n>2$ and consider the binomial expansion of $(n+1)^{\wedge} n$:

$$
n^{n}+\binom{n}{1} n^{n-1}+\binom{n}{2} n^{n-2}+\ldots+\binom{n}{n-2} n^{2}+\binom{n}{n-1} n+1
$$

The penultimate term, $\binom{n}{n-1} n$, is equal to $\mathrm{n}^{\wedge} 2$. Every term to the left of that one is a multiple of $\mathrm{n}^{\wedge} 2$. It's only the rightmost term, 1 , that is not a multiple of $\mathrm{n}^{\wedge} 2$. Therefore we have $(\mathrm{n}+1)^{\wedge} \mathrm{n} \equiv 1 \bmod \mathrm{n}^{\wedge} 2$.

Because $\mathrm{n}>2$, we can say $\mathrm{n}^{\wedge}(\mathrm{n}+1) \equiv 0 \bmod \mathrm{n}^{\wedge} 2$.
Now $a(n)+1=n^{\wedge}(n+1)-(n+1)^{\wedge} n+1 \equiv 0-1+1 \equiv 0 \bmod n^{\wedge} 2$.

Therefore for all $n \geq 0, a(n)+1$ is a multiple of $n^{\wedge} 2$. Q.E.D.
Theorem IV proof.
For $\mathrm{n}=0$ and $\mathrm{n}=2$, we have $\mathrm{a}(\mathrm{n})+1=0$, which is a multiple of $(\mathrm{n}+1)^{\wedge} 2$.
The theorem does not apply to $n=1$. So now suppose $n>2$. Let $m=n+1$.
Now consider $(m-1)^{m}$ mod m^{2}. First look at the binomial expansion of (m - 1)^m:

$$
m^{m}-\binom{m}{1} m^{m-1}+\binom{m}{2} m^{m-2}-\ldots \pm\binom{ m}{m-2} m^{2} \pm\binom{ m}{m-1} m \pm 1
$$

The rightmost term in this expansion is +1 if m is even, and -1 if m is odd. The penultimate term, $\pm\binom{ m}{m-1} m$, is $\pm m^{\wedge} 2$. All the terms to the left of that one are multiples of $\mathrm{m}^{\wedge} 2$. So we have ($\left.\mathrm{m}-1\right)^{\wedge} \mathrm{m} \equiv 1$ if m is even, -1 if m is odd, mod $m^{\wedge} 2$.

Also, $\mathrm{m}^{\wedge}(\mathrm{m}-1) \equiv 0 \bmod \mathrm{~m} \wedge$ 2. (We can say this because $\mathrm{m}>3$, since $\mathrm{n}>2$ and $\mathrm{m}=\mathrm{n}+1$.)

Therefore $(\mathrm{m}-1)^{\wedge} \mathrm{m}-\mathrm{m}^{\wedge}(\mathrm{m}-1) \equiv+1$ if m is even, -1 if m is odd, mod $\mathrm{m}^{\wedge} 2$.

And since $m=n+1$, we now have:
$a(n) \equiv+1$ if n is odd, -1 if n is even, $\bmod (n+1)^{\wedge} 2$, for all $n>2$.

Therefore:

For n odd and $n \geq 3, a(n)-1$ is a multiple of $(n+1)^{\wedge} 2$;
for n even and $n \geq 0, a(n)+1$ is a multiple of $(n+1)^{\wedge} 2$.
Q.E.D.

Combining theorems III and IV, we note that for even n, $a(n)+1$ is a multiple of $n^{2}(n+1)^{2}=n^{4}+2 n^{3}+n^{2}$.

For example:
$\mathrm{a}(4)+1=400$, which is 16 * 25
a(6) $+1=162288$, which is 36 * 49 * 92
a(8) $+1=91171008$, which is $64 * 81 * 17587$
$\mathrm{a}(10)+1=74062575400$, which is $100 * 121 * 6120874$
$\mathrm{a}(12)+1=83695120256592$, which is 144 * 169 * 3439148597
(note that 3439148597 is prime)

