login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007910 Expansion of 1/((1-2*x)*(1+x^2)). 13
1, 2, 3, 6, 13, 26, 51, 102, 205, 410, 819, 1638, 3277, 6554, 13107, 26214, 52429, 104858, 209715, 419430, 838861, 1677722, 3355443, 6710886, 13421773, 26843546, 53687091, 107374182, 214748365, 429496730, 858993459, 1717986918, 3435973837, 6871947674 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also describes the location a(n) of the minimal scaling factor when rescaling an FFT of order 2^{n+2} in order to (currently) minimize the arithmetic operation count (Johnson & Frigo, 2007). - Steven G. Johnson (stevenj(AT)math.mit.edu), Dec 27 2006

a(n) = 2a(n-1)-a(n-2)+2a(n-3). Sequence is identical to its half second differences from the second term; a(n)+a(n+2)=2^(n+2). - Paul Curtz, Dec 17 2007

REFERENCES

M. H. Cilasun, Generalized Multiple Counting Jacobsthal Sequences of Fermat Pseudoprimes, Journal of Integer Sequences, Vol. 19, 2016, #16.2.3.

M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 38.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

M. H. Cilasun, An Analytical Approach to Exponent-Restricted Multiple Counting Sequences, arXiv preprint arXiv:1412.3265 [math.NT], 2014.

I. Gessel, Problem 10424, Amer. Math. Monthly, 102 (1995), 70.

S. G. Johnson and M. Frigo, A modified split-radix FFT with fewer arithmetic operations, IEEE Trans. Signal Processing 55 (2007), 111-119.

Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.

Index entries for linear recurrences with constant coefficients, signature (2,-1,2).

FORMULA

a(1) = 1, a(2n+1) = 2*a(2n) and a(2n) = 2*a(2n-1) + (-1)^n.

a(n) = (4*2^n+cos(Pi*n/2)+2sin(Pi*n/2))/5. - Paul Barry, Dec 17 2003

a(n) = round(2^(n+1)/5). [Mircea Merca, Dec 27 2010]

MAPLE

V:=n->(1/5)*(2^(n-1)+2*cos(n*Pi/2)-sin(n*Pi/2)); [seq(V(n), n=0..12)];

seq(round(2^(n+1)/5), n=1..25) # Mircea Merca, Dec 27 2010

MATHEMATICA

CoefficientList[Series[1/((1 - 2 x) (1 + x^2)), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)

LinearRecurrence[{2, -1, 2}, {1, 2, 3}, 40] (* Harvey P. Dale, Feb 22 2016 *)

PROG

(MAGMA) [Round(2^(n+1)/5): n in [1..40]]; // Vincenzo Librandi, Jun 21 2011

(PARI) a(n)=2^(n+1)\/5 \\ Charles R Greathouse IV, Jun 21 2011

CROSSREFS

Cf. A007909, A007679.

Sequence in context: A086514 A079662 A290991 * A293315 A052702 A058766

Adjacent sequences:  A007907 A007908 A007909 * A007911 A007912 A007913

KEYWORD

nonn,easy

AUTHOR

Mogens Esrom Larsen (mel(AT)math.ku.dk)

EXTENSIONS

Entry revised by N. J. A. Sloane, Feb 24 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 09:17 EST 2017. Contains 294879 sequences.