login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007909 Expansion of (1-x)/(1-2*x+x^2-2*x^3). 11
1, 1, 1, 3, 7, 13, 25, 51, 103, 205, 409, 819, 1639, 3277, 6553, 13107, 26215, 52429, 104857, 209715, 419431, 838861, 1677721, 3355443, 6710887, 13421773, 26843545, 53687091, 107374183, 214748365, 429496729, 858993459, 1717986919, 3435973837, 6871947673 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Equals INVERT transform of (1, 0, 2, 2, 2,...). - Gary W. Adamson, Apr 28 2009

REFERENCES

M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 38.

LINKS

M. F. Hasler, Table of n, a(n) for n = 0..1000 (in replacement of a(0..999) indexed 1..1000 from Vincenzo Librandi).

Charles K. Cook and Michael R. Bacon, Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations, Annales Mathematicae et Informaticae, 41 (2013) pp. 27-39.

Shanzhen Gao, Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.

I. Gessel, Problem 10424, Amer. Math. Monthly, 102 (1995), 70.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 444

Index entries for linear recurrences with constant coefficients, signature (2,-1,2).

FORMULA

G.f.: (1-x)/(1-2*x+x^2-2*x^3).

a(n) = (1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)).

a(n) = sum{k=0..floor((n-1)/3), binomial(n-k-1, 2*k)*2^k}. - Paul Barry, Sep 16 2004

a(n) = (1/5)*(2^(n+1) + (-1)^[(n+1)/2] + 2*(-1)^[n/2]). - Ralf Stephan, Jun 09 2005

a(n) = 2*a(n-1)-a(n-2)+2*a(n-3). Sequence is identical to its half second differences from the second term; a(n)+a(n+2)=2^(n+1). - Paul Curtz, Dec 17 2007

a(n+1) = (2^n)*sum(((-1)^(floor(k/2)))/(2^k),k=1..n). - Yalcin Aktar, Jul 20 2008

MAPLE

U:=n->(1/5)*(2^(n+1)+3*cos(n*Pi/2)+sin(n*Pi/2)); [seq(U(n), n=0..50)];

MATHEMATICA

CoefficientList[Series[(1-x)/(1-2*x+x^2-2*x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 17 2012 *)

LinearRecurrence[{2, -1, 2}, {1, 1, 1}, 40] (* Harvey P. Dale, Jul 26 2016 *)

PROG

(MAGMA) I:=[1, 1, 1]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012

(PARI) a(n)=2^(n+1)\5+(n%4<2) \\ M. F. Hasler, Feb 22 2018

CROSSREFS

Cf. A005251, A007679, A007910.

Sequence in context: A169914 A078000 A190569 * A282913 A284026 A099810

Adjacent sequences:  A007906 A007907 A007908 * A007910 A007911 A007912

KEYWORD

nonn,easy

AUTHOR

Mogens Esrom Larsen (mel(AT)math.ku.dk)

EXTENSIONS

Offset corrected by M. F. Hasler, Feb 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 18:03 EST 2019. Contains 329809 sequences. (Running on oeis4.)