login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007908 Concatenation of the numbers from 1 to n. 98
1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678910, 1234567891011, 123456789101112, 12345678910111213, 1234567891011121314, 123456789101112131415, 12345678910111213141516, 1234567891011121314151617 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also called the triangle of the gods (see Pickover link).

Sometimes called Smarandache consecutive numbers.

As n -> infinity, lim((A007908(n))/(prod(i=1,n, 10^floor(1+(log(i)/(log(10))))))) yields the Champernowne constant. - Alexander R. Povolotsky, May 29 2008, Paolo P. Lava, Jun 06 2008

Number of digits: A058183(n) = A055642(a(n)); sums of digits: A037123(n) = A007953(a(n)). - Reinhard Zumkeller, Aug 10 2010

Charles Nicol and John Selfridge ask if there are infinitely many primes in this sequence, see the Guy reference. - Charles R Greathouse IV, Dec 14 2011

Stephan finds no primes in the first 839 terms. I checked that there are no primes in the first 5000 terms. Heuristically there are infinitely many, about 0.5 log log n through the n-th term. - Charles R Greathouse IV, Sep 19 2012 [Expanded search to 20,000 without finding any primes. - Charles R Greathouse IV, Apr 17 2014]  [Independent search extended to 64,000 terms without finding any primes. - Dana Jacobsen, Apr 25 2014]

Early bird numbers for n > 1: a(2) = A116700(1) = 12; a(3) = A116700(52) = 123; a(4) = A116700(725) = 1234; a(5) = A116700(8074) = 12345; a(6) = A116700(85846) = 123456. - Reinhard Zumkeller, Dec 13 2012

For n < 10^4, a(n)/A000217(n) is an integer for n = 1, 2, and 5. The integers are 1, 4, and 823 (a prime), respectively. - Derek Orr, Sep 04 2014

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, A3.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..100

Y. Guo and M. Le, Smarandache concatenated power decimals and their irrationality, Smarandache Notions Journal, Vol. 9, No. 1-2. 1998, 100-102.

Clifford Pickover, Triangle of the Gods

F. Smarandache, Only Problems, Not Solutions!, Xiquan Publ., Phoenix-Chicago, 1993.

R. W. Stephan, Factors and primes in two Smarandache sequences

Eric Weisstein's World of Mathematics, Consecutive Number Sequences

FORMULA

a(n) = a(n-1)*10^floor[log10(10*n)]+n. - Paolo P. Lava, Feb 01 2008

a(n) = n+a(n-1)*10^A055642(n). - R. J. Mathar, May 31 2008

a(n) = prod(a,1,n,10^floor(1+log(10)^(-1)*log(a))) * sum(b,1,n,prod(a,1,b,10^floor(log(10)^(-1)*(log(10)+log(a))))^(-1)*b). - Alexander R. Povolotsky and Paolo P. Lava, Jun 06 2008

MAPLE

A055642 := proc(n) max(1, ilog10(n)+1) ; end: A007908 := proc(n) if n = 1 then 1; else A007908(n-1)*10^A055642(n)+n ; fi ; end: seq(A007908(n), n=1..12) ; # R. J. Mathar, May 31 2008

P:=proc(i) local a, b, n, x; for n from 1 by 1 to i do x:=evalf(product(10^floor(1+log10(a)), a=1..n)*sum('product(10^floor(log10(10)+log10(a)), a= 1..b)^(-1)*b', 'b'=1..n)); od; end: # Alexander R. Povolotsky and Paolo P. Lava, Jun 06 2008

MATHEMATICA

f[n_] := Block[{c = 0, k = 1}, While[k <= n, c = 10^Floor[1 + Log10[k]] c + k; k++]; c]; Array[f, 17] (* Robert G. Wilson v, Jun 24 2012 *)

Table[FromDigits[Flatten[IntegerDigits[Range[n]]]], {n, 20}] (* Alonso del Arte, Sep 19 2012 *)

PROG

(PARI) A007908(n)= prod(a=1, n, 10^floor(1+log(10)^(-1)*log(a)))*sum(b=1, n, prod(a=1, b, 10^floor(log(10)^(-1)*(log(10)+log(a))))^(-1)*b) \\ Alexander R. Povolotsky and Paolo P. Lava, Jun 06 2008

(PARI) a(n)=my(s=""); for(k=1, n, s=Str(s, k)); eval(s) \\ Charles R Greathouse IV, Sep 19 2012

(MAGMA) [Seqint(Reverse(&cat[Reverse(Intseq(k)): k in [1..n]])): n in [1..17]];  // Bruno Berselli, May 27 2011

(Maxima) a[1]:1$ a[n]:=a[n-1]*10^floor(log(10*n)/log(10))+n$ makelist(a[n], n, 1, 17);  /* Bruno Berselli, May 27 2011 */

(Haskell)

a007908 = read . concatMap show . enumFromTo 1 :: Integer -> Integer

-- Reinhard Zumkeller, Dec 13 2012

CROSSREFS

See A057137 for another version.

Cf. A033307, A053064.

Concatenation of first n numbers in other bases: 2: A047778, 3: A048435, 4: A048436, 5: A048437, 6: A048438, 7: A048439, 8: A048440, 9: A048441, 10: this sequence, 11: A048442, 12: A048443, 13: A048444, 14: A048445, 15: A048446, 16: A048447. [From Dylan Hamilton, Aug 11 2010]

Sequence in context: A014824 A060555 A138957 * A057932 A132943 A187871

Adjacent sequences:  A007905 A007906 A007907 * A007909 A007910 A007911

KEYWORD

nonn,base,easy

AUTHOR

R. Muller

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 04:44 EST 2014. Contains 249839 sequences.