

A007906


Number of steps for aliquot sequence for n to converge to 0, or 1 if it never reaches 0.


9



1, 2, 2, 3, 2, 1, 2, 3, 4, 4, 2, 7, 2, 5, 5, 6, 2, 4, 2, 7, 3, 6, 2, 5, 1, 7, 3, 1, 2, 15, 2, 3, 6, 8, 3, 4, 2, 7, 3, 4, 2, 14, 2, 5, 7, 8, 2, 6, 4, 3, 4, 9, 2, 13, 3, 5, 3, 4, 2, 11, 2, 9, 3, 4, 3, 12, 2, 5, 4, 6, 2, 9, 2, 5, 5, 5, 3, 11, 2, 7, 5, 6, 2, 6, 3, 9, 7, 7, 2, 10, 4, 6, 4, 4, 1, 9, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Length of transient part of trajectory of n if trajectory reaches 1, otherwise a(n) = 1. See A098008 for another version. See A098007 for further information.


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, B6.
R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..275


PROG

(Scheme)
(define (A007906 n) (let loop ((visited (list n)) (i 1)) (let ((next (A001065 (car visited)))) (cond ((zero? next) i) ((member next visited) 1) (else (loop (cons next visited) (+ 1 i)))))))
(define (A001065 n) ( (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 02 2017


CROSSREFS

Cf. A098008, A098007, A044050, A003023.
Sequence in context: A217721 A071862 A030362 * A044050 A096826 A116199
Adjacent sequences: A007903 A007904 A007905 * A007907 A007908 A007909


KEYWORD

sign


AUTHOR

Michael Gerenrot (sch116(AT)yahoo.com)


EXTENSIONS

Definition changed by N. J. A. Sloane, Nov 02 2017 at the suggestion of Antti Karttunen.


STATUS

approved



