login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007897 a(n) is multiplicative with a(2) = 1; a(4) = 2; a(2^i) = 2^(i-2)+2 if i>2; a(p^i) = 1+(p-1)*p^(i-1)/2 if prime p>2 and i>0. 3
1, 1, 2, 2, 3, 2, 4, 4, 4, 3, 6, 4, 7, 4, 6, 6, 9, 4, 10, 6, 8, 6, 12, 8, 11, 7, 10, 8, 15, 6, 16, 10, 12, 9, 12, 8, 19, 10, 14, 12, 21, 8, 22, 12, 12, 12, 24, 12, 22, 11, 18, 14, 27, 10, 18, 16, 20, 15, 30, 12, 31, 16, 16, 18, 21, 12, 34, 18, 24, 12, 36, 16, 37, 19, 22, 20, 24, 14, 40, 18, 28 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

Felix Weinstein, The Fibonacci Partitions, preprint, 1995.

LINKS

Table of n, a(n) for n=1..81.

F. V. Weinstein, Notes on Fibonacci partitions, arXiv:math/0307150 [math.NT]

EXAMPLE

G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 2*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + ...

MATHEMATICA

a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ Apply[ Function[ {p, e}, If[p == 2, If[e < 3, e, 2^(e - 2) + 2], 1 + p^(e - 1) (p - 1)/2]], FactorInteger @ n, 1]]; (* Michael Somos, May 26 2014 *)

PROG

(PARI) ap(p, e) = if (p==2, if (e==1, 1, if (e==2, 2, 2^(e-2)+2)), 1+(p-1)*p^(e-1)/2);

a(n) = { my(f = factor(n)); prod(i=1, #f~, ap(f[i, 1], f[i, 2])); } \\ Michel Marcus, Apr 19 2014

(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==2, if( e<3, e, 2^(e-2) + 2), 1 + p^(e-1) * (p-1) / 2))))}; /* Michael Somos, May 26 2014 */

(PARI) {a(n) = if( n<1, 0, direuler( p = 2, n, if( p>2, 1 / (1 - X) + (p - 1) / 2 * X / (1 - p*X), (1 + X^2) / (1 - X) + p * X^3 / (1 - p*X))) [n])}; /* Michael Somos, May 26 2014 */

CROSSREFS

Cf. A007896, A007898.

Sequence in context: A164341 A124771 A066589 * A180783 A106289 A165418

Adjacent sequences:  A007894 A007895 A007896 * A007898 A007899 A007900

KEYWORD

nonn,mult

AUTHOR

Felix Weinstein, Dec 11 1999 (wain(AT)ana.unibe.ch)

EXTENSIONS

Definition corrected by Michel Marcus, Apr 19 2014

Changed name from phi(n) (which caused much confusion with the Euler phi-function) to a(n). - N. J. A. Sloane, May 26 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 13:30 EDT 2017. Contains 287205 sequences.