login
Summarize the previous term! (in decreasing order).
6

%I #22 Aug 20 2020 01:18:18

%S 1,11,21,1211,1231,131221,132231,232221,134211,14131231,14231241,

%T 24132231,14233221,14233221,14233221,14233221,14233221,14233221,

%U 14233221,14233221,14233221,14233221,14233221,14233221,14233221,14233221,14233221,14233221

%N Summarize the previous term! (in decreasing order).

%H Onno M. Cain, Sela T. Enin, <a href="https://arxiv.org/abs/2004.00209">Inventory Loops (i.e. Counting Sequences) have Pre-period 2 max S_1 + 60</a>, arXiv:2004.00209 [math.NT], 2020.

%F From _Seiichi Manyama_, Aug 18 2020: (Start)

%F a(1) = 1 and a(n) = A244112(a(n-1)) for n > 1.

%F a(n) = 14233221 for n >= 13. (End)

%e For example, the term after 131221 is obtained by saying "one 3, two 2's, three 1's", which gives 13-22-31, i.e. 132231.

%t Nest[Append[#, FromDigits@ Flatten@ Map[Reverse, Tally@ ReverseSort@ IntegerDigits@ #[[-1]] ] ] &, {1}, 24] (* _Michael De Vlieger_, Jul 15 2020 *)

%Y Cf. A005150, A034003, A036058, A244112.

%K nonn,base,easy

%O 1,2

%A _Mira Bernstein_