%I M0681 #30 Jun 06 2022 16:11:01
%S 2,3,5,7,2411,7758337633
%N Primes p such that Ramanujan number tau(p) is divisible by p.
%C Primes at which cusp form Delta_12 (see A007332) is not ordinary.
%D J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 275.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H F. Q. Gouvea (1997) <a href="http://www.emis.de/journals/EM/restricted/6/6.3/gouvea.ps">Non-ordinary primes: a story</a>, Experimental Mathematics 6(3), 195-205.
%H N. Lygeros and O. Rozier (2010) <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Lygeros/lygeros5.pdf">A new solution for the equation tau(p)=0 (mod p)</a>. Journal of Integer Sequences 13, Article 10.7.4.
%H N. Lygeros. <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;ebbe2767.1003">A new solution for the equation tau(p)=0 mod p</a>. Number Theory mailing list (NMBRTHRY).
%t (* First do *) <<NumberTheory`Ramanujan` (* then *) Select[ Prime[ Range[ 5133]], Mod[ RamanujanTau[ # ], # ] == 0 &] (* _Dean Hickerson_, Jan 03 2003 *)
%t Select[Prime[Range[400]],Divisible[RamanujanTau[#],#]&] (* The program generates the first 5 terms of the sequence. *) (* _Harvey P. Dale_, Jun 06 2022 *)
%Y Cf. A000594, A007332. A proper subset of A063938.
%K hard,nonn,more
%O 1,1
%A _N. J. A. Sloane_, _Robert G. Wilson v_
%E a(6)=7758337633 from N. Lygeros and O. Rozier, Mar 16 2010. - _N. J. A. Sloane_, Mar 16 2010
%E Edited by _Max Alekseyev_, Jul 11 2010