This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007635 Primes of form n^2 + n + 17. (Formerly M5069) 52
 17, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 359, 397, 479, 523, 569, 617, 719, 773, 829, 887, 947, 1009, 1277, 1423, 1499, 1657, 1823, 1997, 2087, 2179, 2273, 2467, 2879, 3209, 3323, 3557, 3677, 3923, 4049, 4177, 4987, 5273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = A117530(7,n) for n <= 7: a(1) = A117530(7,1) = A014556(5) = 17, A117531(7) = 7. - Reinhard Zumkeller, Mar 26 2006 Note that the gaps between terms increases by 2*k from k=1 to 15: 19 - 17 = 2, 23 - 19 = 4, 29 - 23 = 6 and so on until 257 - 227 = 30 then fails at 289 - 257 = 32 since 289 = 17^2. - J. M. Bergot, Mar 18 2017 From Peter Bala, Apr 15 2018: (Start) The polynomial P(n):= n^2 + n + 17 takes distinct prime values for the 16 consecutive integers n = 0 to 15. It follows that the polynomial P(n-16) takes prime values for the 32 consecutive integers n = 0 to 31, consisting of the 16 primes above each taken twice. We note two consequences of this fact. 1) The polynomial P(2*n-16) = 4*n^2 - 62*n + 257 also takes prime values for the 16 consecutive integers n = 0 to 15. 2)The polynomial P(3*n-16) = 9*n^2 - 93*n + 257 takes prime values for the 11 consecutive integers n = 0 to 10 ( = floor(31/3)). In addition, calculation shows that P(3*n-16) also takes prime values for n from -5 to -1. Equivalently put, the polynomial P(3*n-31) = 9*n^2 - 183*n + 947 takes prime values for the 16 consecutive integers n = 0 to 15. Cf. A005846 and A048059. (End) REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 96. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Prime-generating Polynomial. FORMULA a(n) = A028823(n)^2 + A028823(n) + 17. - Seiichi Manyama, Mar 19 2017 MATHEMATICA a={}; For[n=0, n<=250, If[PrimeQ[n^2 + n + 17], AppendTo[a, n^2 + n + 17]]; n++]; a (* Indranil Ghosh, Mar 18 2017 *) PROG (MAGMA) [a: n in [0..250]|IsPrime(a) where a is n^2+n+17] // Vincenzo Librandi, Dec 23 2010 (PARI) select(isprime, vector(100, n, n^2+n+17)) \\ Charles R Greathouse IV, Jul 12 2016 (Python) from sympy import isprime print [n**2 + n + 17 for n in range(0, 250) if isprime(n**2 + n + 17)] # Indranil Ghosh, Mar 18 2017 CROSSREFS Cf. A005846, A028823, A048059, A160548. Sequence in context: A106933 A191041 A106932 * A140947 A205700 A228070 Adjacent sequences:  A007632 A007633 A007634 * A007636 A007637 A007638 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 06:26 EST 2019. Contains 320332 sequences. (Running on oeis4.)