login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007607 Skip 1, take 2, skip 3, etc.
(Formerly M0821)
9
2, 3, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 29, 30, 31, 32, 33, 34, 35, 36, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(A000290(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011

A057211(a(n)) = 0. - Reinhard Zumkeller, Dec 30 2011

Numbers k with the property that the smallest Dyck path of the symmetric representation of sigma(k) has a central peak. (Cf. A237593.) - Omar E. Pol, Aug 28 2018

Union of A317303 and A014105. - Omar E. Pol, Aug 29 2018

REFERENCES

R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

G.f.: 1/(1-x) * (1/(1-x) + x*Sum_{k>=1} (2k+1)*x^(k*(k+1))). - Ralf Stephan, Mar 03 2004

a(n) = floor(sqrt(n) + 1/2)^2 + n = A053187(n) + n. - Ridouane Oudra, May 04 2019

EXAMPLE

From Omar E. Pol, Aug 29 2018: (Start)

Written as an irregular triangle in which the row lengths are the nonzero even numbers the sequence begins:

    2,   3;

    7,   8,   9,  10;

   16,  17,  18,  19,  20,  21;

   29,  30,  31,  32,  33,  34,  35,  36;

   46,  47,  48,  49,  50,  51,  52,  53,  54,  55;

   67,  68,  69,  70,  71,  72,  73,  74,  75,  76,  77,  78;

   92,  93,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103, 104, 105;

  121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136;

...

Row sums give the nonzero terms of A317297.

Column 1 gives A130883, n >= 1.

Right border gives A014105, n >= 1.

(End)

MATHEMATICA

Flatten[ Table[i, {j, 2, 16, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *)

PROG

(Haskell)

a007607 n = a007607_list !! (n-1)

a007607_list = skipTake 1 [1..] where

   skipTake k xs = take (k + 1) (drop k xs)

                   ++ skipTake (k + 2) (drop (2*k + 1) xs)

-- Reinhard Zumkeller, Feb 12 2011

(PARI) for(m=0, 10, for(n=2*m^2+3*m+2, 2*m^2+5*m+3, print1(n", "))) \\ Charles R Greathouse IV, Feb 12 2011

(Haskell)

a007607_list' = f $ tail $ scanl (+) 0 [1..] where

   f (t:t':t'':ts) = [t+1..t'] ++ f (t'':ts)

-- Reinhard Zumkeller, Feb 12 2011

CROSSREFS

Cf. A063656, A004202, A063657, A007606, A064801, A004202.

Complement of A007606.

Cf. A014105, A130883, A317297.

Sequence in context: A284514 A268398 A249587 * A076682 A327224 A231624

Adjacent sequences:  A007604 A007605 A007606 * A007608 A007609 A007610

KEYWORD

nonn,easy,tabf

AUTHOR

N. J. A. Sloane, Robert G. Wilson v, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 04:41 EST 2019. Contains 329350 sequences. (Running on oeis4.)