This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007578 Number of Young tableaux of height <= 7.
(Formerly M1219)

%I M1219

%S 1,2,4,10,26,76,232,763,2611,9415,35135,136335,544623,2242618,9463508,

%T 40917803,180620411,813405580,3728248990,17377551032,82232982872,

%U 394742985974,1919885633178,9453682648281,47086636037601,237071351741426,1205689994416252

%N Number of Young tableaux of height <= 7.

%C Also the number of n-length words w over 7-ary alphabet {a1,a2,...,a7} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,a7), where #(z,x) counts the number of letters x in word z. - _Alois P. Heinz_, May 30 2012

%D F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, vol. 139, no. 1-3 (1995), 463-468.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A007578/b007578.txt">Table of n, a(n) for n = 1..400</a>

%H <a href="/index/Y#Young">Index entries for sequences related to Young tableaux.</a>

%F a(n) ~ 45/32 * 7^(n+21/2)/(Pi^(3/2)*n^(21/2)). - _Vaclav Kotesovec_, Sep 11 2013

%p h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+

%p add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)

%p end:

%p g:= proc(n, i, l) option remember;

%p `if`(n=0, h(l), `if`(i=1, h([l[], 1$n]), `if`(i<1, 0,

%p g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))

%p end:

%p a:= n-> g(n, 7, []):

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Apr 10 2012

%p # second Maple program

%p a:= proc(n) option remember;

%p `if`(n<4, [1, 1, 2, 4][n+1],

%p ((4*n^3+78*n^2+424*n+495)*a(n-1)

%p +(n-1)*(34*n^2+280*n+305)*a(n-2)

%p -2*(n-1)*(n-2)*(38*n+145)*a(n-3)

%p -105*(n-1)*(n-2)*(n-3)*a(n-4)) /

%p ((n+6)*(n+10)*(n+12)))

%p end:

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Oct 12 2012

%t RecurrenceTable[{105 (-3+n) (-2+n) (-1+n) a[-4+n]+2 (-2+n) (-1+n) (145+38 n) a[-3+n]-(-1+n) (305+280 n+34 n^2) a[-2+n]+(-495-424 n-78 n^2-4 n^3) a[-1+n]+(6+n) (10+n) (12+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10}, a, {n, 20}] (* _Vaclav Kotesovec_, Sep 11 2013 *)

%Y Column k=7 of A182172. - _Alois P. Heinz_, May 30 2012

%K nonn

%O 1,2

%A _Simon Plouffe_

%E More terms from _Alois P. Heinz_, Apr 10 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 17:12 EST 2015. Contains 264367 sequences.