login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007563 Number of rooted connected graphs where every block is a complete graph.
(Formerly M2751)
10
0, 1, 1, 3, 8, 25, 77, 258, 871, 3049, 10834, 39207, 143609, 532193, 1990163, 7503471, 28486071, 108809503, 417862340, 1612440612, 6248778642, 24309992576, 94905791606, 371691137827, 1459935388202, 5749666477454 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.13).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1600 (first 200 terms from T. D. Noe)

Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 167

N. J. A. Sloane, Transforms

FORMULA

Shifts left when Euler transform is applied twice.

a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524044275... (see A245566), c = 0.1977574301782950818433893126632477845870281049591883888... . - Vaclav Kotesovec, Jul 26 2014

MAPLE

with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): c:= etr(b): a:= n-> if n=0 then 0 else c(n-1) fi: seq(a(n), n=0..25); # Alois P. Heinz, Sep 06 2008

MATHEMATICA

etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[0] = 0; a[n_] := etr[etr[a]][n-1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *)

PROG

(PARI)

EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([0], v)} \\ Andrew Howroyd, May 20 2018

CROSSREFS

Cf. A007549, A030019, A035051, A035052, A035053.

Column k=2 of A144042.

Cf. A245566.

Sequence in context: A148790 A148791 A148792 * A050383 A060404 A192905

Adjacent sequences:  A007560 A007561 A007562 * A007564 A007565 A007566

KEYWORD

nonn,nice,eigen,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

New description from Christian G. Bower, Oct 15 1998

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 04:08 EDT 2018. Contains 313843 sequences. (Running on oeis4.)