login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007561 Number of asymmetric rooted connected graphs where every block is a complete graph.
(Formerly M2591)
5

%I M2591

%S 0,1,1,1,3,6,16,43,120,339,985,2892,8606,25850,78347,239161,734922,

%T 2271085,7054235,22010418,68958139,216842102,684164551,2165240365,

%U 6871792256,21865189969,69737972975,222915760126,714001019626,2291298553660,7366035776888

%N Number of asymmetric rooted connected graphs where every block is a complete graph.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A007561/b007561.txt">Table of n, a(n) for n = 0..1900</a>

%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F Shifts left when weigh-transform applied twice.

%F a(n) ~ c * d^n / n^(3/2), where d = 3.382016466020272807429818743..., c = 0.161800727760188847021075748... . - _Vaclav Kotesovec_, Jul 26 2014

%p g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(binomial(a(i), j)*g(n-i*j, i-1), j=0..n/i)))

%p end:

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(binomial(g(i, i), j)*b(n-i*j, i-1), j=0..n/i)))

%p end:

%p a:= n-> `if`(n<1, 0, b(n-1, n-1)):

%p seq(a(n), n=0..40); # _Alois P. Heinz_, May 19 2013

%t g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[a[i], j]*g[n-i*j, i-1], {j, 0, n/i}]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<1, 0, b[n-1, n-1]]; Table[a[n] // FullSimplify, {n, 0, 40}] (* _Jean-Fran├žois Alcover_, Feb 11 2014, after _Alois P. Heinz_ *)

%Y Cf. A007563, A035079-A035081.

%Y Column k=2 of A316101.

%K nonn,nice,eigen

%O 0,5

%A _N. J. A. Sloane_.

%E Additional comments from _Christian G. Bower_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:29 EST 2019. Contains 329850 sequences. (Running on oeis4.)