login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007558 Shifts 2 places left when e.g.f. is squared.
(Formerly M1230)
3
1, 1, 1, 2, 4, 10, 30, 100, 380, 1600, 7400, 37400, 204600, 1205600, 7612000, 51260000, 366784000, 2778820000, 22222332000, 187067320000, 1653461480000, 15310662400000, 148217381840000, 1497226615280000, 15754506226800000, 172407188412800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

O Bodini, M Dien, X Fontaine, A Genitrini, HK Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16 Lecture Notes in Computer Science Series Volume 9644

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..518 (first 200 terms from Alois P. Heinz)

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

FORMULA

a(n) ~ c * d^n * n! * n, where d = 0.42089835222875301896706732846764190595145230471243866202153775712470703269..., c = 1.06293253745327664869312823202016275205862332741406172188742740834633...

. - Vaclav Kotesovec, Sep 06 2014

E.g.f.: 6^(1/3) * WeierstrassP((x+c)/6^(1/3), 0, -1/3), where c = 9.1898572290187191497581591181140131456801040793456712149069964791654... is the root of the equation WeierstrassP(c/6^(1/3), 0, -1/3) = 6^(-1/3). - Vaclav Kotesovec, Jun 14 2015

MAPLE

a:= proc(n) option remember;

      `if`(n<2, 1, add(a(i)*a(n-2-i) *binomial(n-2, i), i=0..n-2))

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Jun 22 2012

MATHEMATICA

a[n_] := a[n] = If[n<2, 1, Sum[a[i]*a[n-2-i]*Binomial[n-2, i], {i, 0, n-2}]]; Table[a[n], {n, 0, 30}] (* Jean-Fran├žois Alcover, Feb 03 2014, after Alois P. Heinz *)

Round[CoefficientList[Series[6^(1/3) * WeierstrassP[(x + c)/6^(1/3), {0, -1/3}], {x, 0, 25}], x] * Range[0, 25]! /. FindRoot[6^(1/3)*WeierstrassP[c/6^(1/3), {0, -1/3}] == 1, {c, 8}, WorkingPrecision -> 1000]] (* Vaclav Kotesovec, Jun 14 2015 *)

CROSSREFS

Sequence in context: A003289 A087161 A328358 * A094957 A000733 A092073

Adjacent sequences:  A007555 A007556 A007557 * A007559 A007560 A007561

KEYWORD

nonn,nice,eigen

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)