|
|
A007538
|
|
A self-generating sequence: there are a(n) 3's between successive 2's.
(Formerly M0432)
|
|
13
|
|
|
2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
(a(n)) is the unique fixed point of the morphism 2->233, 3->2333 (immediate from its definition). - Michel Dekking, Feb 21 2017
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Bryce Emerson Blackham, Subtraction Games: Range and Strict Periodicity, Master's thesis, 2018.
The Fifty-Fourth William Lowell Putnam Mathematical Competition, Problem A-6, Amer. Math. Monthly, 101 (1994), 727-728.
The Fifty-Fourth William Lowell Putnam Mathematical Competition, Problem A-6, Math. Mag., 67 (No. 2, 1994), 157-158.
|
|
FORMULA
|
a(n) = floor( n*(1+sqrt(3)) ) - floor( (n-1)*(1+sqrt(3)) ).
a(n) = f(n,2,2,2) with f(n,b,c,i) = if n=1 then b else (if c=0 then f(n-1,2,a(i),i+1) else f(n-1,3,c-1,i)). [Reinhard Zumkeller, May 25 2009]
a(n) = A080757(n-1) + 1; a(n) = A188068(n) + 2. [Reinhard Zumkeller, Feb 14 2012]
a(A188069(n)) = 2; a(A188070(n)) = 3. - Reinhard Zumkeller, Feb 14 2012
|
|
MATHEMATICA
|
f[n_, b_, c_, i_] := f[n, b, c, i] = If[n == 1, b, If[c == 0 , f[n-1, 2, a[i], i+1], f[n-1, 3, c-1, i]]]; a[n_] := f[n, 2, 2, 2]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 15 2013, after Reinhard Zumkeller *)
Table[Floor[n (1 + Sqrt@ 3)] - Floor[(n - 1) (1 + Sqrt@ 3)], {n, 120}] (* Michael De Vlieger, Oct 08 2016 *)
|
|
PROG
|
(Haskell)
a007538 n = f n 2 2 2 where
f 1 b _ _ = b
f n b 0 i = f (n - 1) 2 (a007538 i) (i + 1)
f n b c i = f (n - 1) 3 (c - 1) i
-- Reinhard Zumkeller, Feb 14 2012
|
|
CROSSREFS
|
Sequence in context: A102313 A262955 A276859 * A242285 A238756 A025076
Adjacent sequences: A007535 A007536 A007537 * A007539 A007540 A007541
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
N. J. A. Sloane, Simon Plouffe
|
|
STATUS
|
approved
|
|
|
|