login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007417 If k appears, 3k does not.
(Formerly M0954)
7
1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The characteristic function of this sequence is given by A014578. - Philippe Deléham, Mar 21 2004

Numbers whose ternary representation ends in even number of zeros. - Philippe Deléham, Mar 25 2004

Numbers for which 3 is not an infinitary divisor. - Vladimir Shevelev, Mar 18 2013

Where odd terms occur in A051064. - Reinhard Zumkeller, May 23 2013

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Iain Fox, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)

Aviezri S. Fraenkel, The vile, dopey, evil and odious game players,  Discrete Math. 312 (2012), no. 1, 42-46.

S. Plouffe, Email to N. J. A. Sloane, Jun. 1994

David Wakeham and David R. Wood, On multiplicative Sidon sets, INTEGERS, 13 (2013), #A26.

FORMULA

Lim_{n->infinity} a(n)/n = 4/3. - Philippe Deléham, Mar 21 2004

Partial sums of A092400. Indices of even numbers in A007949. Indices of odd numbers in A051064. a(n) = A092401(2n-1). - Philippe Deléham, Mar 29 2004

{a(n)} = A052330({A042948(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Aug 31 2019

EXAMPLE

From Gary W. Adamson, Mar 02 2010: (Start)

Given the following multiplication table: top row = "not multiples of 3", left column = powers of 3; we get:

  ...

   1   2   4   5   7   8   10   11   13

   3   6  12  15  21  24   30   33   39

   9  18  36  45  63  72   90   99  114

  27  54 108

  81

  ... If rows are labeled (1, 2, 3, ...) then odd-indexed rows are in the set; but evens not. Examples: 9 is in the set since 3 is not, but 27 in row 4 can't be. (End)

MATHEMATICA

Select[ Range[100], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // EvenQ)&] (* Jean-François Alcover, Mar 01 2013, after Philippe Deléham *)

PROG

(Haskell)

import Data.List (delete)

a007417 n = a007417_list !! (n-1)

a007417_list = s [1..] where

   s (x:xs) = x : s (delete (3*x) xs)

(PARI) is(n) = { my(i = 0); while(n%3==0, n/=3; i++); i%2==0; } \\ Iain Fox, Nov 17 2017

CROSSREFS

Complement of A145204. - Reinhard Zumkeller, Oct 04 2008

Cf. A007949, A014578 (characteristic function), A042948, A051064, A052330, A092400, A092401.

Sequence in context: A039137 A071807 A074232 * A039099 A215069 A035257

Adjacent sequences:  A007414 A007415 A007416 * A007418 A007419 A007420

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

More terms from Philippe Deléham, Mar 29 2004

Typo corrected by Philippe Deléham, Apr 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 03:28 EDT 2020. Contains 334836 sequences. (Running on oeis4.)