login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007417 If n appears, 3n does not.
(Formerly M0954)
7
1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The characteristic function of this sequence is given by A014578. - Philippe Deléham, Mar 21 2004

Numbers n such that their ternary representation ends in even number of zeros . - Philippe Deléham, Mar 25 2004

Numbers for which 3 is not infinitary divisor. - Vladimir Shevelev, Mar 18 2013

Where odd terms occur in A051064. - Reinhard Zumkeller, May 23 2013

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

Aviezri S. Fraenkel, The vile, dopey, evil and odious game players,  Discrete Math. 312 (2012), no. 1, 42-46.

David Wakeham and David R. Wood, On multiplicative Sidon sets, INTEGERS, 13 (2013), #A26.

FORMULA

Lim n -> infinity a(n)/n = 4/3 . - Philippe Deléham, Mar 21 2004

Partial sums of A092400. Indices of even numbers in A007949. Indices of odd numbers in A051064. a(n) = A092401(2n-1). - Philippe Deléham, Mar 29 2004

EXAMPLE

From Gary W. Adamson, Mar 02 2010: (Start)

Given the following multiplication table: top row = "not multiples of 3"

left column = powers of 3; we get:

...

.1...2...4...5...7...8...10...11...13...

.3...6..12..15..21..24...30...33...39...

.9..18..36..45..63..72...90...99..114...

27..54.108..............................

81......................................

... If rows are labeled (1, 2, 3,...) then odd indexed rows are in the set; but

evens not. Examples: 9 is in the set since 3 is not, but 27 in row 4 can't be. (End)

MATHEMATICA

Select[ Range[100], (# // IntegerDigits[#, 3]& // Split // Last // Count[#, 0]& // EvenQ)&] (* Jean-François Alcover, Mar 01 2013, after Philippe Deléham *)

PROG

(Haskell)

import Data.List (delete)

a007417 n = a007417_list !! (n-1)

a007417_list = s [1..] where

   s (x:xs) = x : s (delete (3*x) xs)

CROSSREFS

Complement of A145204. [From Reinhard Zumkeller, Oct 04 2008]

Sequence in context: A039137 A071807 A074232 * A039099 A215069 A035257

Adjacent sequences:  A007414 A007415 A007416 * A007418 A007419 A007420

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

More terms from Philippe Deléham, Mar 29 2004

Typo corrected by Philippe Deléham, Apr 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 17:57 EDT 2017. Contains 287241 sequences.