login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007413 A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1.
(Formerly M0406)
20

%I M0406

%S 1,2,3,1,3,2,1,2,3,2,1,3,1,2,3,1,3,2,1,3,1,2,3,2,1,2,3,1,3,2,1,2,3,2,

%T 1,3,1,2,3,2,1,2,3,1,3,2,1,3,1,2,3,1,3,2,1,2,3,2,1,3,1,2,3,1,3,2,1,3,

%U 1,2,3,2,1,2,3,1,3,2,1,3,1,2,3,1,3,2,1,2,3,2,1,3,1,2,3,2,1,2,3,1,3,2,1,2,3

%N A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1.

%C a(n)=2 if and only if n-1 is in A079523. - Benoit Cloitre, Mar 10 2003.

%C Partial sums modulo 4 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ...- _Philippe Deléham_, Mar 04 2004

%C To construct the sequence : start with 1 and concatenate 4 -1 = 3 : 1, 3, then change the last term (2 -> 1, 3 ->2 ) gives : 1, 2. Concatenate 1, 2 with 4 -1 = 3, 4 - 2 = 2 : 1, 2, 3, 2 and change the last term : 1, 2, 3, 1. Concatenate 1, 2, 3, 1 with 4 - 1 = 3, 4 - 2 = 2, 4 - 3 = 1, 4 - 1 = 3 : 1, 2, 3, 1, 3, 2, 1, 3 and change the last term : 1, 2, 3, 1, 3, 2, 1, 2 etc.- _Philippe Deléham_, Mar 04 2004

%C To construct the sequence : start with the Thue-Morse sequence A010060 = 0, 1, 1, 0, 1, 0, 0, 1, ... Then change 0 -> 1, 2, 3, _ and 1 -> 3, 2, 1, _ gives : 1, 2, 3, _, 3, 2, 1, _,3, 2, 1, _, 1, 2, 3, _, 3, 2, 1, _, ...and fill in the successive holes with the successive terms of the sequence itself.- _Philippe Deléham_, Mar 04 2004

%C To construct the sequence : to insert the number 2 between the A003156(k)-th term and the (1 + A003156(k))-th term of the sequence 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, ...- _Philippe Deléham_, Mar 04 2004

%C Conjecture. The sequence is formed by the numbers of 1's between every pair of consecutive 2's in A076826. - Vladimir Shevelev, May 31 2009

%D James D. Currie, Palindrome positions in ternary square-free words, Theoretical Computer Science, 396 (2008) 254-257

%D J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 18.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D A. Thue. Über unendliche Zeichenreihe. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 7:1a22, 1906.

%H Roger L. Bagula, <a href="/A007413/a007413.txt">Description of sequence as successive rows of a triangle</a>

%H V. Keranen, <a href="http://south.rotol.ramk.fi/keranen/ias2002/NewAbelianSquare-FreeDT0L-LanguagesOver4Letters.nb">New Abelian Square-Free DT0L-Languages over 4 Letters</a>

%H S. Kitaev and T. Mansour, <a href="http://arXiv.org/abs/math.CO/0210170">Counting the occurrences of generalized patterns...</a>.

%F a(n) modulo 2 = A035263(n). a(A036554(n)) = 2. a(A003159(n)) = 1 if n odd. a(A003159(n)) = 3 if n even. a(n) = A033485(n) mod 4. a(n) = 4 - A036585(n-1).- _Philippe Deléham_, Mar 04 2004

%F a(n) = 2 - A029883(n) = 3 - A036577(n) . - _Philippe Deléham_, Mar 20 2004

%F For n>=1, we have: 1) a(A108269(n))=A010684(n-1); 2) a(A079523(n))=A010684(n-1); 3) a(A081706(2n))=A010684(n). - Vladimir Shevelev, Jun 22 2009

%e Here are the first 5 stages in the construction of this sequence, together with Mma code, taken from Keranen's article. His alphabet is a,b,c rather than 1,2,3.

%e productions = {"a" → "abc ", "b" → "ac ", "c" → "b ", " " -> ""};

%e NestList[g, "a", 5] // TableForm

%e a

%e abc

%e abc ac b

%e abc ac b abc b ac

%e abc ac b abc b ac abc ac b ac abc b

%e abc ac b abc b ac abc ac b ac abc b abc ac b abc b ac abc b abc ac b ac

%t Nest[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 3}, 3 -> {2}}] &, {1}, 7] (from Robert G. Wilson v, May 07 2005)

%o (PARI) a(n)=if(n<1|valuation(n,2)%2,2,2+(-1)^subst(Pol(binary(n)),x,1))

%Y Cf. A001285, A010060.

%Y First differences of A000069.

%Y Equals A036580(n-1) + 1.

%Y Cf. A115384 A159481 A007413 A000120.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 07:26 EST 2014. Contains 252098 sequences.