login
Number of strict 7th-order maximal independent sets in cycle graph.
(Formerly M4590)
0

%I M4590 #23 Jan 02 2018 19:27:32

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,0,20,0,33,0,48,0,65,9,84,29,105,

%T 62,128,110,153,175,189,259,247,364,340,492,483,645,693,834,989,1081,

%U 1392,1421,1925,1904,2613,2597,3492,3586,4620,4978,6090

%N Number of strict 7th-order maximal independent sets in cycle graph.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, J. Graph Theory, submitted, 1994.

%H R. Yanco, <a href="/A007380/a007380.pdf">Letter and Email to N. J. A. Sloane, 1994</a>

%F Empirical g.f.: x^18*(7*x^2-9) / ((x-1)^2*(x+1)^2*(x^9+x^2-1)). - _Colin Barker_, Mar 29 2014

%F a(n) = A007389(n) - b(n) where b(1) = 0, b(2*n+1) = 2*n+1, b(2*n) = 2. - _Sean A. Irvine_, Jan 02 2018

%Y Cf. A007389.

%K nonn

%O 1,18

%A _N. J. A. Sloane_, _Mira Bernstein_

%E More terms from _Sean A. Irvine_, Jan 02 2018