login
Number of strict 3rd-order maximal independent sets in cycle graph.
(Formerly M3727)
0

%I M3727 #25 Apr 29 2018 19:06:08

%S 0,0,0,0,0,0,0,0,0,5,0,12,0,21,5,32,17,45,38,65,70,99,115,156,180,247,

%T 279,385,435,590,682,896,1067,1360,1657,2073,2553,3173,3913,4865,5986,

%U 7455,9159,11407,14024,17434,21479,26636,32886,40705,50320

%N Number of strict 3rd-order maximal independent sets in cycle graph.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs", Journal of Graph Theory, submitted, 1994, apparently unpublished.

%H R. Yanco, <a href="/A007380/a007380.pdf">Letter and Email to N. J. A. Sloane, 1994</a>

%F Conjecture: a(n) = 3*a(n-2) - 3*a(n-4) + a(n-5) + a(n-6) - 2*a(n-7) + a(n-9) with g.f. x^10*(-5+3*x^2)/((x^5+x^2-1)*(x-1)^2*(1+x)^2). - _R. J. Mathar_, Oct 30 2009

%F a(n) = A007387(n) - b(n) where b(1) = 0, b(2*n+1) = 2*n+1, b(2*n) = 2. - _Sean A. Irvine_, Jan 02 2018

%Y Cf. A007387.

%K nonn

%O 1,10

%A _N. J. A. Sloane_, _Mira Bernstein_

%E More terms from _Sean A. Irvine_, Jan 02 2018