login
Number of strict 5th-order maximal independent sets in path graph.
(Formerly M2200)
0

%I M2200 #20 Jan 02 2018 19:29:26

%S 0,0,0,0,0,0,1,0,3,0,6,0,10,1,15,4,21,10,28,20,37,35,50,56,70,84,101,

%T 121,148,171,217,241,315,342,451,490,638,707,896,1022,1256,1473,1765,

%U 2111,2492,3007,3535,4263,5030,6028,7164,8520,10195

%N Number of strict 5th-order maximal independent sets in path graph.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. Yanco and A. Bagchi, ``K-th order maximal independent sets in path and cycle graphs,'' J. Graph Theory, submitted, 1994, apparently unpublished.

%H R. Yanco, <a href="/A007380/a007380.pdf">Letter and Email to N. J. A. Sloane, 1994</a>

%F Apparently a(n)= 3*a(n-2) -3*a(n-4) +a(n-6) +a(n-7) -2*a(n-9) +a(n-11) with g.f. -x^7/((x^7+x^2-1)*(x-1)^2*(1+x)^2). [From _R. J. Mathar_, Oct 30 2009]

%F a(n) = A007380(n) - b(n) where b(2*n+1) = 1 and b(2*n) = n+1.- _Sean A. Irvine_, Jan 02 2018

%Y Cf. A007380.

%K nonn

%O 1,9

%A _N. J. A. Sloane_, _Mira Bernstein_

%E More terms from _Sean A. Irvine_, Jan 02 2018