|
|
A007320
|
|
Number of steps needed for juggler sequence (A094683) started at n to reach 1.
(Formerly M4047)
|
|
19
|
|
|
0, 1, 6, 2, 5, 2, 4, 2, 7, 7, 4, 7, 4, 7, 6, 3, 4, 3, 9, 3, 9, 3, 9, 3, 11, 6, 6, 6, 9, 6, 6, 6, 8, 6, 8, 3, 17, 3, 14, 3, 5, 3, 6, 3, 6, 3, 6, 3, 11, 5, 11, 5, 11, 5, 11, 5, 5, 5, 11, 5, 11, 5, 5, 3, 5, 3, 11, 3, 14, 3, 5, 3, 8, 3, 8, 3, 19, 3, 8, 3, 10, 8, 8, 8, 11, 8, 10, 8, 11, 8, 11, 8, 11, 8, 8, 8, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
It is not known if every starting value eventually reaches 1.
|
|
REFERENCES
|
C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 232.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Giovanni Resta, Table of n, a(n) for n = 1..10000
H. J. Smith, Juggler Sequence
Eric Weisstein's World of Mathematics, Juggler Sequence
Wikipedia, Juggler sequence
R. G. Wilson, V, Letter to N. J. A. Sloane, Sep. 1992
|
|
EXAMPLE
|
The trajectory of 1 is 3, 5, 11, 36, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... so a(3) = 6.
|
|
MAPLE
|
A007320 := proc(n)
local a, ntrack;
a := 0 ;
ntrack := n ;
while ntrack > 1 do
ntrack := A094683(ntrack) ;
a := a+1 ;
end do:
return a;
end proc: # R. J. Mathar, Apr 19 2013
|
|
MATHEMATICA
|
js[n_] := If[ EvenQ[n], Floor[ Sqrt[n]], Floor[ Sqrt[n^3]]]; f[n_] := Length[ NestWhileList[js, n, # != 1 &]] - 1; Table[ f[n], {n, 99}] (* Robert G. Wilson v, Jun 10 2004 *)
|
|
CROSSREFS
|
Cf. A007321, A094683, A094698, A094679, A093685, A094716.
Sequence in context: A033939 A021020 A215578 * A199734 A007321 A062828
Adjacent sequences: A007317 A007318 A007319 * A007321 A007322 A007323
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Robert G. Wilson v, Mira Bernstein
|
|
EXTENSIONS
|
Corrected and extended by Jason Earls, Jun 09 2004
|
|
STATUS
|
approved
|
|
|
|