login
Expansion of e.g.f. (sin 2x + cos x) / cos 3x.
(Formerly M1873)
14

%I M1873 #70 Nov 01 2024 13:06:45

%S 1,2,8,46,352,3362,38528,515086,7869952,135274562,2583554048,

%T 54276473326,1243925143552,30884386347362,825787662368768,

%U 23657073914466766,722906928498737152,23471059057478981762,806875574817679474688,29279357851856595135406

%N Expansion of e.g.f. (sin 2x + cos x) / cos 3x.

%C Arises in the enumeration of alternating 3-signed permutations.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Matthew House, <a href="/A007289/b007289.txt">Table of n, a(n) for n = 0..406</a> (terms 0..200 from Vincenzo Librandi)

%H R. Ehrenborg and M. A. Readdy, <a href="/A006873/a006873.pdf">Sheffer posets and r-signed permutations</a>, Preprint, 1994. (Annotated scanned copy)

%H Richard Ehrenborg and Margaret A. Readdy, <a href="http://www.labmath.uqam.ca/~annales/volumes/19-2.html">Sheffer posets and r-signed permutations</a>, Annales des Sciences Mathématiques du Québec, 19 (1995), 173-196.

%F E.g.f.: (sin(2*x) + cos(x)) / cos(3*x).

%F a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^j*binomial(k,j)*(k-2*j)^n*I^(n-k). - _Peter Luschny_, Jul 31 2011

%F a(n) = Im(2*((1-I)/(1+I))^n*(1+sum_{j=0..n}(binomial(n,j)*Li_{-j}(I)*3^j))). - _Peter Luschny_, Apr 28 2013

%F a(n) ~ n! * 2^(n+1)*3^(n+1/2)/Pi^(n+1). - _Vaclav Kotesovec_, Jun 15 2013

%F a(0) = 1; a(n) = 2 * Sum_{k=0..floor((n-1)/2)} (-1)^k * binomial(n,2*k+1) * a(n-2*k-1). - _Ilya Gutkovskiy_, Mar 10 2022

%p A007289 := proc(n) local k,j; add(add((-1)^j*binomial(k,j)*(k-2*j)^n*I^(n-k),j=0..k),k=0..n) end: # _Peter Luschny_, Jul 31 2011

%t mx = 17; Range[0, mx]! CoefficientList[ Series[ (Sin[2 x] + Cos[x])/Cos[3 x], {x, 0, mx}], x] (* _Robert G. Wilson v_, Apr 28 2013 *)

%o (PARI) my(x='x+O('x^66)); Vec(serlaplace((sin(2*x) + cos(x)) / cos(3*x))) \\ _Joerg Arndt_, Apr 28 2013

%o (Sage)

%o from mpmath import mp, polylog, im

%o mp.dps = 32; mp.pretty = True

%o def aperm3(n): return 2*((1-I)/(1+I))^n*(1+add(binomial(n,j)*polylog(-j,I)*3^j for j in (0..n)))

%o def A007289(n) : return im(aperm3(n))

%o [int(A007289(n)) for n in (0..17)] # _Peter Luschny_, Apr 28 2013

%Y Row 3 of A349271.

%Y Cf. A006873, A007286, A225109, A000191 (bisection), A000436 (bisection).

%K nonn,changed

%O 0,2

%A _N. J. A. Sloane_ and _Simon Plouffe_