The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007279 Number of partitions of n into partition numbers. (Formerly M0558) 13
 1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 36, 44, 54, 66, 79, 95, 113, 133, 157, 184, 216, 250, 290, 335, 385, 442, 505, 576, 656, 743, 842, 951, 1070, 1204, 1351, 1514, 1691, 1887, 2102, 2336, 2595, 2875, 3184, 3519, 3883, 4282, 4713, 5181, 5690, 6241, 6839, 7482 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018. FORMULA G.f.: 1/Product_{k>=1} (1-q^A000041(k)). - Michel Marcus, Jun 20 2018 MAPLE with(combinat): gf := 1/product((1-q^numbpart(k)), k=1..20): s := series(gf, q, 200): for i from 0 to 199 do printf(`%d, `, coeff(s, q, i)) od: # James A. Sellers, Feb 08 2002 MATHEMATICA CoefficientList[ Series[1/Product[1 - x^PartitionsP[i], {i, 1, 15}], {x, 0, 50}], x] PROG (PARI) seq(n)={my(t=1); while(numbpart(t+1)<=n, t++); Vec(1/prod(k=1, t, 1-x^numbpart(k) + O(x*x^n)))} \\ Andrew Howroyd, Jun 22 2018 CROSSREFS Cf. A000041. Cf. A086209, A229362. Sequence in context: A175870 A114829 A175869 * A034891 A143611 A279075 Adjacent sequences:  A007276 A007277 A007278 * A007280 A007281 A007282 KEYWORD nonn AUTHOR EXTENSIONS More terms from James A. Sellers, Feb 08 2002 a(0)=1 prepended by Alois P. Heinz, Jul 02 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 02:02 EST 2020. Contains 332086 sequences. (Running on oeis4.)