login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007279 Number of partitions of n into partition numbers.
(Formerly M0558)
13
1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 36, 44, 54, 66, 79, 95, 113, 133, 157, 184, 216, 250, 290, 335, 385, 442, 505, 576, 656, 743, 842, 951, 1070, 1204, 1351, 1514, 1691, 1887, 2102, 2336, 2595, 2875, 3184, 3519, 3883, 4282, 4713, 5181, 5690, 6241, 6839, 7482 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.

FORMULA

G.f.: 1/Product_{k>=1} (1-q^A000041(k)). - Michel Marcus, Jun 20 2018

MAPLE

with(combinat): gf := 1/product((1-q^numbpart(k)), k=1..20): s := series(gf, q, 200): for i from 0 to 199 do printf(`%d, `, coeff(s, q, i)) od: # James A. Sellers, Feb 08 2002

MATHEMATICA

CoefficientList[ Series[1/Product[1 - x^PartitionsP[i], {i, 1, 15}], {x, 0, 50}], x]

PROG

(PARI) seq(n)={my(t=1); while(numbpart(t+1)<=n, t++); Vec(1/prod(k=1, t, 1-x^numbpart(k) + O(x*x^n)))} \\ Andrew Howroyd, Jun 22 2018

CROSSREFS

Cf. A000041.

Cf. A086209, A229362.

Sequence in context: A175870 A114829 A175869 * A034891 A143611 A279075

Adjacent sequences:  A007276 A007277 A007278 * A007280 A007281 A007282

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mira Bernstein

EXTENSIONS

More terms from James A. Sellers, Feb 08 2002

a(0)=1 prepended by Alois P. Heinz, Jul 02 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 02:02 EST 2020. Contains 332086 sequences. (Running on oeis4.)