login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007248 McKay-Thompson series of class 4C for the Monster group.
(Formerly M5084)
9

%I M5084

%S 1,20,-62,216,-641,1636,-3778,8248,-17277,34664,-66878,125312,-229252,

%T 409676,-716420,1230328,-2079227,3460416,-5677816,9198424,-14729608,

%U 23328520,-36567242,56774712,-87369461,133321908,-201825396,303248408,-452431503

%N McKay-Thompson series of class 4C for the Monster group.

%D J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.

%D D. Ford, J. McKay and S. P. Norton, ``More on replicable functions,'' Commun. Algebra 22, No. 13, 5175-5193 (1994).

%D J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.

%D McKay, John; Strauss, Hubertus. The q-series of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253-278.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A007248/b007248.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>

%F G.f.: 16*(theta_3/theta_2)^4 - 8 = 16 / lambda(z) - 8.

%F G.f.: 8*x^(1/2) + (Product_{k>0} (1 - x^(k/2)) / (1 - x^(2*k)))^8.

%F Expansion of q * ( -8 + 16 / lambda(z)) in powers of q^2 where nome q = exp(Pi i z). - _Michael Somos_, Nov 14 2006

%F Expansion of 4 * q^(1/2) * (k(q) + 1 / k(q)) in powers of q where nome q = exp(Pi i z). - _Michael Somos_, Nov 11 2014

%F Expansion of q * (8 + (eta(q) / eta(q^4))^8) in powers of q^2. - _Michael Somos_, Nov 14 2006

%F Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v + 24)^2 - (v + 8) * u^2. - _Michael Somos_, Nov 14 2006

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A097243. - _Michael Somos_, Jul 22 2011

%F a(n) = A029845(2*n - 1) = A124972(2*n - 1). - _Michael Somos_, Nov 14 2006.

%e G.f. = 1 + 20*x - 62*x^2 + 216*x^3 - 641*x^4 + 1636*x^5 - 3778*x^6 + ...

%e T4C = 1/q + 20*q - 62*q^3 + 216*q^5 - 641*q^7 + 1636*q^9 - 3778*q^11 + ...

%t a[ n_] := SeriesCoefficient[ 8 q + (QPochhammer[ q] / QPochhammer[ q^4])^8, {q, 0, 2 n}]; (* _Michael Somos_, Jul 22 2011 *)

%t a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ -8 + 16 / m, {q, 0, 2 n - 1}]]; (* _Michael Somos_, Jul 22 2011 *)

%t a[ n_] := SeriesCoefficient[ -8 + 16 (EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q])^4, {q, 0, 2 n - 1}]; (* _Michael Somos_, Jul 22 2011 *)

%o (PARI) {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( 8*x + (eta(x + A) / eta(x^4 + A))^8, n))}; /* _Michael Somos_, Nov 14 2006 */

%Y Cf. A029845, A097243, A124972.

%Y Cf. A000521, A007240, A014708, A007241, A007267, A045478, etc.

%K sign,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 01:33 EST 2017. Contains 295954 sequences.