|
|
A007179
|
|
Dual pairs of integrals arising from reflection coefficients.
(Formerly M3284)
|
|
8
|
|
|
0, 1, 1, 4, 6, 16, 28, 64, 120, 256, 496, 1024, 2016, 4096, 8128, 16384, 32640, 65536, 130816, 262144, 523776, 1048576, 2096128, 4194304, 8386560, 16777216, 33550336, 67108864, 134209536, 268435456
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
J. Heading, Theorem relating to the development of a reflection coefficient in terms of a small parameter, J. Phys. A 14 (1981), 357-367.
Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264 | doi:10.1246/bcsj.20140204. See Tables 1 and 2 (and text). - N. J. A. Sloane, Mar 26 2015
Index entries for linear recurrences with constant coefficients, signature (2,2,-4).
|
|
FORMULA
|
From Paul Barry, Apr 28 2004: (Start)
Binomial transform is (A000244(n)+A001333(n))/2.
G.f.: x*(1-x)/((1-2*x)*(1-2*x^2)).
a(n) = 2*a(n-1)+2*a(n-2)-4*a(n-3).
a(n) = 2^n/2-2^(n/2)*(1+(-1)^n)/4. (End)
G.f.: (1+x*Q(0))*x/(1-x), where Q(k)= 1 - 1/(2^k - 2*x*2^(2*k)/(2*x*2^k - 1/(1 + 1/(2*2^k - 8*x*2^(2*k)/(4*x*2^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
|
|
MAPLE
|
f := n-> if n mod 2 = 0 then 2^(n-1)-2^((n-2)/2) else 2^(n-1); fi;
|
|
MATHEMATICA
|
LinearRecurrence[{2, 2, -4}, {0, 1, 1}, 30] (* Harvey P. Dale, Nov 30 2015 *)
|
|
PROG
|
(MAGMA) [Floor(2^n/2-2^(n/2)*(1+(-1)^n)/4): n in [0..40]]; // Vincenzo Librandi, Aug 20 2011
(PARI) Vec(x*(1-x)/((1-2*x)*(1-2*x^2)) + O(x^50)) \\ Michel Marcus, Jan 28 2016
|
|
CROSSREFS
|
Sequence in context: A059736 A261682 A102731 * A112576 A174804 A081487
Adjacent sequences: A007176 A007177 A007178 * A007180 A007181 A007182
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Simon Plouffe
|
|
STATUS
|
approved
|
|
|
|