%I M2909 #44 Nov 07 2021 15:28:01
%S 1,0,1,3,11,60,502,7403,197442,9804368,902818087,153721215608,
%T 48443044675155,28363687700395422,30996524108446916915,
%U 63502033750022111383196,244852545022627009655180986,1783161611023802810566806448531,24603891215865809635944516464394339
%N Number of unlabeled simple connected bridgeless graphs with n nodes.
%C Also unlabeled simple graphs with spanning edge-connectivity >= 2. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices. - _Gus Wiseman_, Sep 02 2019
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Andrew Howroyd, <a href="/A007146/b007146.txt">Table of n, a(n) for n = 1..40</a> (terms 1..22 from R. J. Mathar)
%H P. Hanlon and R. W. Robinson, <a href="http://dx.doi.org/10.1016/0095-8956(82)90048-X">Counting bridgeless graphs</a>, J. Combin. Theory, B 33 (1982), 276-305, Table III.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BridgelessGraph.html">Bridgeless Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConnectedGraph.html">Connected Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a>
%H Gus Wiseman, <a href="/A007146/a007146.png">The a(3) = 1 through a(5) = 11 connected bridgeless graphs.</a>
%F a(n) = A001349(n) - A052446(n). - _Gus Wiseman_, Sep 02 2019
%o (PARI) \\ Translation of theorem 3.2 in Hanlon and Robinson reference. See A004115 for graphsSeries and A339645 for combinatorial species functions.
%o cycleIndexSeries(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
%o NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ _Andrew Howroyd_, Dec 31 2020
%Y Cf. A005470 (number of simple graphs).
%Y Cf. A007145 (number of simple connected rooted bridgeless graphs).
%Y Cf. A052446 (number of simple connected bridged graphs).
%Y Cf. A263914 (number of simple bridgeless graphs).
%Y Cf. A263915 (number of simple bridged graphs).
%Y The labeled version is A095983.
%Y Row sums of A263296 if the first two columns are removed.
%Y BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
%Y Graphs with non-spanning edge-connectivity >= 2 are A327200.
%Y 2-vertex-connected graphs are A013922.
%Y Cf. A000719, A001349, A002494, A261919, A327069, A327071, A327074, A327075, A327077, A327109, A327144, A327146.
%K nonn,nice
%O 1,4
%A _N. J. A. Sloane_
%E Reference gives first 22 terms.