login
A007106
Number of labeled odd degree trees with 2n nodes.
(Formerly M3704)
15
1, 4, 96, 5888, 686080, 130179072, 36590059520, 14290429935616, 7405376630685696, 4917457306800619520, 4071967909087792857088, 4113850542422629363482624, 4980673081258443273955966976, 7119048451600750435732824260608, 11861520124846917915630931846103040
OFFSET
1,2
REFERENCES
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..211 (terms 1..39 from R. W. Robinson)
Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
B. R. Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
Mathematics Stack Exchange, Marko R. Riedel, Odd degree trees
Mathematics Stack Exchange, Marko R. Riedel, Odd degree trees II
FORMULA
a(n) = A060279(n)/(2*n). - Vladeta Jovovic, Feb 08 2005
Bisection of A058014. The expansion 1/sqrt(1+x^2)*arcsinh(x) = x - 4*x^3/3! + 64*x^5/5! - ... (see A002454) has series reversion x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + .... The coefficients appear to be the terms of this sequence. As an x-adic limit this e.g.f. equals lim_{n -> infinity} sinh(f(n,x)), where f(0,x) = x and f(n,x) = x*cosh(f(n-1,x)) for n >= 1. See the example section below. - Peter Bala, Apr 24 2012
a(n) = Sum_{k=1..n} binomial(n,k) * k! * (n-2)! [z^{n-2}] [u^k] exp(u(exp(z)+exp(-z)-2)/2)). - Marko Riedel, Jun 16 2016
From Alexander Burstein, Oct 13 2021: (Start)
a(n) = (1/2) * Sum_{k=0..n-1} binomial(2*n,k) * (n-k)^(2*n-2) for n >= 2.
a(n) = (2*n-1)!*[x^(2*n-1)] sinh(REVERT(x/cosh(x))), see A036778. (End)
a(n) = Sum_{k=0..n-1} A156289(n-1, k)*(2*n)!/(2*n-k)!. - Peter Luschny, May 07 2022
EXAMPLE
From Peter Bala, Apr 24 2012: (Start)
Let G(x) = 1 + x^2/2! + 13*x^4/4! + 541*x^6/6! + ... be the e.g.f. for A143601. Then sinh(x*G(x)) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + ....
Conjectural e.g.f. as an x-adic limit:
sinh(x) = x + ...; sinh(x*cosh(x)) = x + 4*x^3/3! + ...;
sinh(x*cosh(x*cosh(x))) = x + 4*x^3/3! + 96*x^5/5! + ...;
sinh(x*cosh(x*cosh(x*cosh(x)))) = x + 4*x^3/3! + 96*x^5/5! + 5888*x^7/7! + ....
(End)
MAPLE
A007106(n) = A(2n) where n>=2, A(n) = (add(binomial(n, q)*(n-2*q)^(n-2)/(n-2)!, q=0..n) - add(binomial(n-1, q)*(n-2*q)^(n-3)/(n-3)!, q=0..n-1) + add(binomial(n-1, q)*(n-2-2*q)^(n-3)/(n-3)!, q=0..n-1))*n!/2^(n+1)/(n-1)
MATHEMATICA
{1}~Join~Array[(1/2)*Sum[Binomial[2 #, k]*(# - k)^(2 # - 2), {k, 0, # - 1}] &, 12, 2] (* Michael De Vlieger, Oct 13 2021 *)
PROG
(PARI) a(n) = if(n<=1, n==1, sum(k=0, n-1, binomial(2*n, k) * (n-k)^(2*n-2))/2) \\ Andrew Howroyd, Nov 22 2021
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Feb 08 2005
STATUS
approved