This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007082 Number of Eulerian circuits on the complete graph K_{2n+1}, divided by (n-1)!^{2n+1}. (Formerly M2183) 2
 2, 264, 1015440, 90449251200, 169107043478365440, 6267416821165079203599360, 4435711276305905572695127676467200, 58393052751308545653929138771580386824519680, 14021772793551297695593332913856884153315254190271692800, 60498832138791357698014788383803842810832836262245623803123983974400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, p. 745, Problem 107. B. D. McKay, Applications of a technique for labeled enumeration, Congress. Numerantium, 40 (1983), 207-221. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Brendan D. McKay and Robert W. Robinson, Asymptotic enumeration of Eulerian circuits in the complete graph, Combinatorics, Probability and Computing, 7 (1998), 437-449. (gives terms up to n=10, i.e., up through K_{21}) CROSSREFS Sequence in context: A236437 A137105 A216984 * A135388 A238983 A188964 Adjacent sequences:  A007079 A007080 A007081 * A007083 A007084 A007085 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 18:14 EDT 2019. Contains 327981 sequences. (Running on oeis4.)