

A007082


Number of Eulerian circuits on the complete graph K_{2n+1}, divided by (n1)!^{2n+1}.
(Formerly M2183)


2



2, 264, 1015440, 90449251200, 169107043478365440, 6267416821165079203599360, 4435711276305905572695127676467200, 58393052751308545653929138771580386824519680, 14021772793551297695593332913856884153315254190271692800, 60498832138791357698014788383803842810832836262245623803123983974400
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, p. 745, Problem 107.
B. D. McKay, Applications of a technique for labeled enumeration, Congress. Numerantium, 40 (1983), 207221.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..10.
Brendan D. McKay and Robert W. Robinson, Asymptotic enumeration of Eulerian circuits in the complete graph, Combinatorics, Probability and Computing, 7 (1998), 437449. (gives terms up to n=10, i.e., up through K_{21})


CROSSREFS

Sequence in context: A236437 A137105 A216984 * A135388 A238983 A188964
Adjacent sequences: A007079 A007080 A007081 * A007083 A007084 A007085


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane, Mira Bernstein


EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003


STATUS

approved



