This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007063 Main diagonal of Kimberling's expulsion array (A035486). (Formerly M2387) 9
 1, 3, 5, 4, 10, 7, 15, 8, 20, 9, 18, 24, 31, 14, 28, 22, 42, 35, 33, 46, 53, 6, 36, 23, 2, 55, 62, 59, 76, 65, 54, 11, 34, 48, 70, 79, 99, 95, 44, 97, 58, 84, 25, 13, 122, 83, 26, 115, 82, 91, 52, 138, 67, 90, 71, 119, 64, 37, 81, 39, 169, 88, 108, 141, 38, 16, 146, 41, 21 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998. R. K. Guy, Unsolved Problems Number Theory, Sect E35. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS E. Pérez Herrero, Table of n, a(n) for n = 1..100000 C. Kimberling, Problem 1615, Crux Mathematicorum (Ottawa) 17:2 (1991), p. 44. Eric Weisstein's World of Mathematics, Kimberling Sequence FORMULA a(theta(k))=3*theta(k)-(k+1), where theta(k)=sum_{i=0}^{k-1}{2^floor(i/3)} - Enrique Pérez Herrero, Feb 23 2010 MATHEMATICA Contribution from Enrique Pérez Herrero, Feb 09 2010: (Start) K[i_, j_] := i + j - 1 /; (j >= 2 i - 3); K[i_, j_] := K[i - 1, i - j/2 - 1] /; (EvenQ[j] && (j < 2 i - 3)); K[i_, j_] := K[i - 1, i + (j - 1)/2] /; (OddQ[j] && (j < 2 i - 3)); A007063[i_] := A007063[i] = K[i, i]; SetAttributes[A007063, Listable] (End) PROG (PARI) K(i, j) = { my(i1, j1); i1=i; j1=j; while(j1<(2*i1-3), if(j1%2, j1=i1+((j1-1)/2), j1=i1-((j1+2)/2)); i1--; ); return(i1+j1-1); } A007063(i)=K(i, i); \\ Enrique Pérez Herrero, Feb 21 2010 CROSSREFS Cf. A175312, A006852, A035486, A038807. Sequence in context: A177983 A294673 A078439 * A127397 A284048 A326119 Adjacent sequences:  A007060 A007061 A007062 * A007064 A007065 A007066 KEYWORD nonn,nice,easy AUTHOR EXTENSIONS More terms from James A. Sellers, Dec 23 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 14:52 EDT 2019. Contains 328161 sequences. (Running on oeis4.)