This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007060 Number of ways n couples can sit in a row without any spouses next to each other. 11
 1, 0, 8, 240, 13824, 1263360, 168422400, 30865121280, 7445355724800, 2287168006717440, 871804170613555200, 403779880746418176000, 223346806774106790297600, 145427383048755178635264000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) approaches (2n)!*exp(-1) as n goes to infinity. Also the number of (directed) Hamiltonian paths of the n-cocktail party graph - Eric W. Weisstein, Dec 16 2013 LINKS Andrew Woods, Table of n, a(n) for n = 0..100 G. Almkvist, Letter to N. J. A. Sloane, Apr. 1992 Eric Weisstein's World of Mathematics, Cocktail Party Graph Eric Weisstein's World of Mathematics, Hamiltonian Path FORMULA a(n) = (Pi*BesselI(n+1/2,1)*(-1)^n+BesselK(n+1/2,1))*exp(-1)*(2/Pi)^(1/2)*2^n*n! - Mark van Hoeij, Nov 12 2009 a(n) = (-1)^n*2^n*n!*A000806(n), n>0. - Vladeta Jovovic, Nov 19 2009 a(n) = n!*hypergeom([ -n, n+1],[],1/2)*(-2)^n. - Mark van Hoeij, Nov 13 2009 a(n) = 2^n * A114938(n). - Toby Gottfried, Nov 22 2010 a(n) = 2*n((2*n-1)*a(n-1) + (2*n-2)*a(n-2)), n>1. - Aaron Meyerowitz, May 14 2014 From Peter Bala, Mar 06 2015: (Start) a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*A000166(2*k). For n >= 1, int_{x = 0..1} (x^2 - 1)^n*exp(x) dx = a(n)*e - A177840(n). Hence A177840(n)/a(n) -> e as n -> infinity (End) a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n + 1/2) / exp(2*n+1). - Vaclav Kotesovec, Mar 09 2016 EXAMPLE For n = 2, the a(2) = 8 solutions for the couples {1,2} and {3,4} are {1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231}. MAPLE seq(add((-1)^i*binomial(n, i)*2^i*(2*n-i)!, i=0..n), n=0..20); MATHEMATICA Table[Sum[(-1)^i Binomial[n, i] (2 n - i)! 2^i, {i, 0, n}], {n, 0, 20}] Table[(2 n)! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}] PROG (PARI) a(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!*2^(n-k)) \\ Charles R Greathouse IV, May 11 2016 (Python) from sympy import binomial, subfactorial def a(n): return sum([(-1)**(n - k)*binomial(n, k)*subfactorial(2*k) for k in xrange(n + 1)]) # Indranil Ghosh, Apr 28 2017 CROSSREFS Cf. A000166, A000806, A114938, A177840, A053983, A053984. Sequence in context: A221466 A067360 A221770 * A158263 A221417 A272236 Adjacent sequences:  A007057 A007058 A007059 * A007061 A007062 A007063 KEYWORD nonn,easy,nice,changed AUTHOR David Roberts Keeney (David.Roberts.Keeney(AT)directory.Reed.edu) EXTENSIONS More terms from Michel ten Voorde (seqfan(AT)tenvoorde.org), Apr 11 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.