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1. Introduction

We consider partitions of an ordered set of n objects, which we take to be N, ={1,2....,n}. Using the
principle of inclusion and exclusion, the number P(n,p) of different p-part partitions is

-1
P(np) = o T (¢ ] -y M

Even for p =2, this number (2"~ ~ 1) is exponential in n. Thus it is very time-consuming, in searching for
an optimal partition under some cost function, to examine all these partitions. One way to deal with this
"size" problem is to confine attention to a small subset of partitions. When the elements can be linearly
" ordered, an approach that is popular in the Operations Research literature [1,3,4,5,6] is to work with cost
functions such that the optimal partition will be consecutive, where a consecutive partition is one where
every subset of the partition consists of consecutive elements. The number of consecutive partitions is

cp= 1), @

the number of ways of inserting p — 1 commas in the n — 1 spaces between adjacent elements. Thus even a
brute force search needs only to examine a polynomial number of such partitions. Dynamic programming
has been proposed to further cut down the computation.

Other subsets of partitions have been studied. Consider order-consecu:ive partitions, where an
ordered partition ( §;, - -+ ,S, ) of N, is order — consecutive iff for k=1,....p, \Siisa consecutive sub-

: i=1
set of N,. Clearly a consecutive partition is order-consecutive. Such an ordered partition can be repre-
sented by a completely nested set of pairs of parentheses, i.e. with all the left parentheses occurring before
the first right parenthesis, as for example in

(1((2((3)45)6)78)9) (3
which represents the order-consecutive partition i
S1={3}.52={4,5},55={2,6],54={7,8},S5=(1,9)

Chakravarty, Orlin and Rothblum [4] gave conditions under which there exists a pre-consecutive
optimal partition, where pre —consecutive (they called it semi — consecutive) means that the subsets of the
partition can be ordered so that it has the order-consecutive property. For example, suppose n=5,p=3.
Then (§,={2,3}.5,={4},53=(1,5}) and (§,5,.53) are both order-consecutive partitions; so the
unordered set {S,,5,,53) is pre-consecutive. None of these partitions is consecutive. Clearly a consecu-
tive partition is pre-consecutive.

Boros and Hammer [2] gave conditions under which there exists a nested optimal partition where
nested means that there do not exist four elements a <b < ¢ <d with a and c in one subset and b and 4 in
another. Clearly, a pre-consecutive partition is nested since a partition that is not nested cannot have the
pre-conseculive property. An example of a nested partition that is not pre-consecutive is
{$1=(2}.5,=(4}.5,={1,3,5]].

Let the number of order-consecutive (resp. pre-consecutive, nested) p-part partitions of N, be
OC(n,p) (resp. PC(n,p) ,N(n,p)). Clearly

C(n,p)<PC(n,p)<OC(n,p), PC(n,p)s<N(n.p)
We shall determine PC(n,p),0C(n,p), and N(n,p). Some numerical values appear at the end of this



paper.

2. The number of nested partitions.

Suppose {§y,52, - - - ,5,} is a nested partition of N,. Since the partition is nested, we can represent
it by placing pairs of parentheses suitably around and between the ordered elements of N,; e.g. with
n=9,p=4,

(1(23)45(6)(7)8)(9) : @
represents the nested (but not pre-consecutive) partition
$1={1,4,5.8},5,={2,3},53={6},54={7}.55={9) &)

Note that we place each parenthesis in a pair as close together as possible; thus we do not allow the repre-
sentation

(1(23)45((6)7)8)(9)

because here the parentheses defining the subset {7} are not as close as possible. Note that in a representa-
tion such as (4) of a nested partition we cannot have two adjacent left parentheses, or two adjacent right
ones; if this happens, the outer parenthesis can be moved to be closer to its mate. The only way two adja-
cent parentheses can occur (between two integers) is as an ")(" pair. We call such a configuration "N-
proper”. An N-proper representation of a nested partition is clearly unique. Note that if we remove all X(-
pairs from such a representation, the resulting configuration of parentheses will continue to satisfy the usual
constraint that the number of left parentheses, counting from left to right, is never less than the number of
right parentheses.

It is well known that the number of ways k pairs of parentheses can be arranged, satisfying the usual
constraint that the number of left parentheses, countng from left to right, is never less than the number of
right parentheses, is the Catalan number

__1 [2k]
o= Uk
We need a simple lemma.
Lemma 1. Let the number of ways k pairs of parentheses can be arranged, subject to the usual condition,
and such that the mate of the first (left) parenthesis is the last (right) parenthesis, be C;. Then C;=C;_;.
Proof. We have the generating function

C(x)= 3 Cpx*

k=0
=-1—(1—V 1-4x)
2x

Enumerating the partitions that are counted by C, according to the position of the mate of the first (left)
parenthesis shows that

3 Ci (1) =C(x)?=(C(x)-1)/x
k=0

which proves the lemma. O
Theorem 2. The number of nested partitions of N, with p parts and having j )(-pairs is

n—-1!

Fo-Dp-i-Din-2p+j+1D)! ©
Proof We show that the number we require is
-1 2p—j-2
S| G @

which reduces to (6). We have to place p pairs of parentheses in and around N, so as to define a proper
nested partition, and with exactly j )(- pairs occuring. Suppose we remove the j )(-pairs. Then it is necessary
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that the mate of the first (left) parenthesis is the last (right) parenthesis, since otherwise some element of N,
would not be included in any part of the partition. The )(-pairs can occur anywhere between these extreme
parentheses. We have 2p — 2 single parentheses, which according to Lemma 1 can be arranged in C,_;_,

ways. There are 2p —2 j— 2 parentheses between the extreme pair; we can insert the j )(-pairs in [2P _jj - 2]

ways. Now we have 2p —j— 1 gaps between the single parentheses and the )(-pairs, each of which must be
assigned at least one element of N,. We can do this by first placing one element in each gap, and then per-

muting the remaining n - (2p —j— 1) elements with 2p —j—2 separators, in [2pn—_j{- 2] ways. This proves
(N.o
Coroliary 3.

=27 ("] ®

Proof. A simple (Vandermonde) summation gives:

1 (p)/7E! -
O (% B (5] -wo
Corollary 4. The total number of nested partitions of N, is

T N(n.p) = Cy ©

p=1
Proof. Vandermonde again.

3. The number of pre-consecutive partitions.
Pre-consecutive partitions can also be represented by placing parentheses around and between the
elements of N,. For example, with n=9,p=4
(1(2(3)(45)6)(78)9)
represents the partition
{8§1=(1,9}.82={2,6},5,={3},84={4,5}.85={7.8} }
which is pre-consecutive since the ordered partition
( SS ,S4 st!‘gS vsl )

is order-consecutive. (Note that S5 and §; could be taken in the reverse order.) We call such a representa-
tion, with all pairs of parentheses as close together as possible, PC-proper. There is now an additional con-
straint.

Lemma 5. If all )(-pairs in a PC-proper configuration are deleted, then the remaining pairs of parentheses
are completely nested.

Proof. Suppose to the contrary that we have a right parenthesis ), to the left of a left parenthesis (; . not
as a )(-pair, so that there is a non-empty set x of integers between them. Without loss of generality, we
may assume that no other parentheses, except possibly some that form )(-pairs, lie between ); and (2, since
otherwise we could replace {);,(2} by a closer pair of parentheses. If there exists no )(-pair between ), and
(,, consider the left parenthesis (; that is the mate of ),, and the right parenthesis ), that is the mate of (,.
Then the configuration must be

rwhx(2y)--

where each of w,x,y is non-empty (and might contain more parentheses). Now consider the pair of paren-
theses (o,)o that define the subset containing x. These lie beyond (; and ), so we must have

v whnx(2y)az)e -
with v and z non-empty. But this configuration does not define a pre-consecutive partition.
If there are one or more )(-pairs between ); and (2, let )’ be the left-most right parenthesis of the )(-
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pairs, and let (" be the right-most left parenthesis of the )(-pairs. Let (; and ( be the mates of ); and )
respectively, defining subsels S, and S’ respectively. Similarly, let ), and )" be the mates of (, and ¢,
defining subsets S, and §*. Then we have:

CS S NS ) So(CS (2852)28)

where S, may be empty. Since there is no left parenthesis between ), and )’, (" must be to the left of ),
and because of the pre-consecutive property, is also to the left of (;. This implies that S’ has a non-zero
number of elements between (* and (;, and also between ); and )’. Therefore, S must appear after §; in
any ordering of the subsets of the partition that has the order-consecutive property. Similarly, we conclude
that S~ must appear after S,. But S, is not consecutive to either S, or §”, and neither is S, consecutive to
§; or S’. Hence there is no ordering of the four subsets Sy, § z,S S l.hal preserves the order-consecutive
property, in contradiction to our assumption. 0

Theorem 6

S ] [2p—j—2]
PC(n,p) j§g" 2p—j—2 i (10)
Proof. We count the number of PC-proper configurations. There must be a single left parenthesis in the
space before the first element, and a single right parenthesis after the last element. Suppose the remaining
parentheses contain j )(-pairs. Then there are 2p —2j—2 parentheses not involved in )(-pairs. Each of
these j+(2p —2j—2) objects (i.e. single parentheses and )(-pairs) must fill a different space chosen from
the n — 1 spaces between the elements. The first factor in (9) counts the number of ways these spaces can
be chosen. the second factor represents the number of ways the j )(-pairs can be inserted into a sequence of
p —j—1left parentheses followed by p —j— 1 right parentheses. O

4. The number of order-consecutive partitions.

Suppose S={S§;, - -+ §,} is a order-consecutive partition of N,,. We can represent S (uniquely) by
inserting 2p —2 characters, alternately p — 1 commas and slashes, (i.e. ,/,/ - - -,/ in that order) into the n
spaces between the elements of N, (the space after the last element is allowed to contain a slash), subject to
the constraint that if we ignore the slashes, the commas divide N, into a proper p-part partition, i.e. there
must be at least one element of N, between each pair of commas. In this representation, the slashes indi-
cate how each successive part of the partition relates to the previously-accumulated parts; elements between

7
the j-th comma and the j-th slash correspond to elements of S;, that lie to the left of {_) S}, and elements
k=1
between the j-th slash and the j+ 1-th comma correspond to elements of §;,, that lie to the right of this
union. For example, the order-consecutive partition in (3) above is here represented as

1,/23,4/5,/67,8/9

which shows that S, has just one element, S, has two elements, both of which lie to the right of S, S5 has
two elements, one of which lies to the left of §; () S, and the other to the right, S, has two elements

both to the right of §; {_j S 1 S3,and S5 has two elements, one to the left and one to the right of U Si-
k=1
Theorem 7

octon-Eirrp )3

Proof. We count the number of representations of the form described above. If we were to ignore the
requirement that the commas define a proper (consecutive) p-part partition, the number of ways of inserting
the commas and slashes would be
[n +2p— 3]
2p-2
But this counts many arrangements with parts of size zero. Using inclusion-exclusion, we first subtract the
number of arrangements in which for some j, 0<j<p —1, the j-th part is empty; in these arrangements the
Jj-th comma is immediately followed by a slash and another comma. Deleting this slash and the second



-5-

comma, we have one of the arrangements counted by

[n+2p—5]
2p-4

Continuing, we arrive at (11) (withk=p—-1-j).0

5. Some related topics

Let N° (n,p) denote the number of nested partitions such that the mate of the first left parenthesis is
the last right parenthesis, i.e. both the first and the last element of N, belong to the same subset. We call
this the * -property.

Lemma 8.

N.(":P) = N(n_lrp)

Proof. We establish a one-one mapping between the members of the two sets that are enumerated by
N*(n,p) and N(n-1,p). Given any (n,p) nested partition satisfying the * property , simply delete the ele-
ment n; given any (n — 1,p) nested partition, add the element n to the subset containing the first element. O

We now show that the number N(n,p) arises in some other contexts.

Theorem 9. The number of ways n pairs of parentheses can be arranged (subject to the usual constraint)
such that exactly p —1 X-pairs occur is N(n,p).

Proof. We will call the parentheses to be arranged in this theorem "brackets” to avoid confusion with the
parentheses that are counted by N(n,p). We will define a one-one mapping between arrangements of n
pairs of brackets, containing exactly p—1 ][-pairs, and nested partitions of N, into p parts. Notice that
this mapping is not the same as the one discussed in the proof of Theorem 2. Some examples of the corre-
spondence we shall set up, with n=4, p =3 are:

HE4) (N
H@3x4) (0]
a)Ex4) Ml
e (NI
1234 [Nl
a@cE inin

We proceed by induction on n.  For n=1 (and p=1) simply transform the brackets into parentheses
(and delete the integer 1). For general n, consider a p-part nested partition of N, in its parenthesis represen-
tation. Suppose that the mate of the first left parenthesis lies in the i-th space, which is just to the right of
the elementi of N,. If 1 <i < n—1 (as in the first five examples above), then this i-th space must contain a
)(-pair and the partition can be decomposed into two subpartitions, one of N; and the other of {i+1,...,n}.
Suppose that the first subpartition contains ¢ pairs of parentheses (including the original pair). Then the
second subpartition contains p — g pairs of parentheses. By the inductive hypothesis, each of these subparti-
tions corresponds uniquely to an arrangement of brackets, the first having i pairs of brackets and ¢ —1 ][-
pairs, and the second having n —i pairs of brackets and containing p —¢ —1 ][-pairs. Concatenating these
two subpartitions introduces one more |[-pair, giving altogether an arrangement with n pairs of brackets
containing p — 1 ][-pairs.

If i=n (as in the last of the six examples above), the p-part partition of N, has the *-property of
Lemma 8, and we can use the one-one mapping described in the proof of that Lemma to replace the (n,p)
partition by a nested (n ~ 1,p) partition, simply by deleting the last element of N ,. Now take the parenthe-
sis representation of that partition, replace it (by the inductive hypothesis) by its corresponding bracket con-
figuration, and place an extra pair of brackets around it. This gives an arrangement of 1+(n—1) = n pairs
of brackets having p — 1 ][-pairs, as required. All the steps in these constructions are reversible. 0

The correspondence in Theorem 9 provides an alternative proof of (9).

The number N(n,p) arises also in the following context: it is the number of weak-lead lattice paths
from (0,0) to (n,n) that have exactly p horizontal (and p vertical) segments, i.e. it is the number of arrange-
ments of n votes for each of two candidates A and B such that in the counting, A never trails B and the
votes arrive in exactly 2p blocks, alternately for A and B.  Such vote-sequences are in 1-1 correspondence
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with n + 1-node rooted trees, in two distinct ways: in the first, one circumnavigates the tree, going up a new
branch for an A-vote and down the other side of an old branch for a B-vote. For the second correspon-
dence, color the nodes of the tree black and white alternately. Circumnavigate the tree, starting at the
(black) root, assigning labels 0,1,2,...,n —1 to the black nodes as they are encountered. (We do not assign
a label 2 to the root node on completing the circuit). Then, for each black node, each of its labels is
replaced by a copy of its lowest numerical label. Now put the set of assigned labels into increasing order,
giving ¢;,c3, -« - ,¢,. Then this represents (uniquely) a vote-sequence in which ¢; is the number of votes
that B has obtained when A receives his i-th vote. (See [7]).
Finally, we present an identity for which we have only an algebraic proof.
Theorem 10

S =N 1.5
Nop)= % (Vo -1
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Table 1 Values of PC(n,p), the number of p-part pre-consecutive partitions of N ,.

p= 1 2 3 4 5 6 7 8
1 1
2 1 1
3 1 3 1
4 1 6 6 1
5 1 10 19 10 1
6 1 15 45 45 15 1
7 1 21 90 141 90 21 1
8 1 28 161 357 357 161 28 1

Table 2 Values of N(n,p), the number of p-part nested partitions of N ,.

p= 1 2 3 4 5 6 7 8
n: .

1 1

2 1 1

3 1 3 1

4 1 6 6 1

5 1 10 20 10 1

6 1 15 50 50 15 1

7 1 21 105 175 105 21 1

8 1 28 196 490 490 196 28 1

Table 3 Values of OC(n,p), the number of p-part order-consecutive partitions of N ,.

p= 1 2 3 4 5 6 7 8
n=

1 1

2 1 2

3 1 5 4

4 1 9 16 8

5 1 14 41 4 16

6 1 20 85 146 112 32

7 1 27 155 371 456 272 64

8 1 35 259 833 1408 1312 640 128



