login
Number of 4-regular polyhedra with n nodes.
(Formerly M2290)
13

%I M2290 #73 May 14 2024 02:23:44

%S 0,0,0,0,0,1,0,1,1,3,3,11,18,58,139,451,1326,4461,14554,49957,171159,

%T 598102,2098675,7437910,26490072,94944685,341867921,1236864842,

%U 4493270976,16387852863,59985464681,220320405895,811796327750,3000183106119

%N Number of 4-regular polyhedra with n nodes.

%C Number of simple 4-regular 4-edge-connected 3-connected planar graphs; by Steinitz's theorem, every such graph corresponds to a single planar map up to orientation-reversing isomorphism. Equivalently, number of 3-connected quadrangulations of sphere with orientation-reversing isomorphisms permitted with n faces. - _Andrey Zabolotskiy_, Aug 22 2017

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay, R. Thomas, and P. Wollan, <a href="http://people.math.gatech.edu/~thomas/PAP/quad.pdf">Generation of simple quadrangulations of the sphere</a>, Discr. Math., 305 (2005), 33-54. doi:<a href="http://dx.doi.org/10.1016/j.disc.2005.10.005">10.1016/j.disc.2005.10.005</a>

%H Gunnar Brinkmann and Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/plantri/">plantri and fullgen</a> programs for generation of certain types of planar graph.

%H Gunnar Brinkmann and Brendan McKay, <a href="/A000103/a000103_1.pdf">plantri and fullgen</a> programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission]

%H CombOS - Combinatorial Object Server, <a href="http://combos.org/plantri">generate planar graphs</a>

%H M. B. Dillencourt, <a href="http://dx.doi.org/10.1006/jctb.1996.0008">Polyhedra of small orders and their Hamiltonian properties</a>, Journal of Combinatorial Theory Series B 66:1 (1996), 87-122.

%H S. V. Jablan, L. M. Radović, and R. Sazdanović, <a href="http://eudml.org/doc/253048">Basic polyhedra in knot theory</a>, Kragujevac J. Math., 28 (2005), 155-164.

%H T. Tarnai, F. Kovács, P. W. Fowler, and S. D. Guest, <a href="https://doi.org/10.1098/rspa.2012.0116">Wrapping the cube and other polyhedra</a>, Proc. Roy. Soc. A 468(2145) (2012), 2652-2666. DOI: 10.1098/rspa.2012.0116.

%e For n=6, the sole 6-vertex 4-regular polyhedron is the octahedron. The corresponding 6-face quadrangulation is its dual graph, i. e., the cube graph.

%e From _Allan Bickle_, May 13 2024: (Start)

%e For n=8, the unique graph is the square of an 8-cycle.

%e For n=9, the unique graph is the dual of the Herschel graph. (End)

%Y Cf. A000944 (all polyhedral graphs), A113204, A078672, A078666 (total number of simple 4-regular 4-edge-connected planar maps, including not 3-connected ones).

%Y Cf. A072552, A078666, A111361, A292515 (4-regular planar graphs with restrictions).

%K nonn

%O 1,10

%A _N. J. A. Sloane_, Apr 28 1994

%E More terms from _Hugo Pfoertner_, Mar 22 2003

%E a(29) corrected by _Brendan McKay_, Jun 22 2006

%E Leading zeros prepended by _Max Alekseyev_, Sep 12 2016

%E Offset corrected by _Andrey Zabolotskiy_, Aug 22 2017