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Abstract: We examine permutations having a unique fixed point and a unique reflected point; such permutations
correspond to permutation matrices having exactly one 1 on each of the two main diagonals. The permutations
are of two types according to whether or not the fixed point is the same as the reflected point. We also consider
permutations having no fixed or reflected points; these have been enumerated using two different methods, and we

employ one of these to count permutations with unique fixed and reflected points.
Introduction

The original inspiration for this work was a coin problem published by Henry Ernest Dudeney, which
we discovered on page 249 of [2]. Dudeney challenges the reader to arrange twenty pennies in a square so
that there is the same number of pennies in each row and each column and along each of the two main
diagonals. The solution is obtained by placing sixteen pennies in a square and making an appropriate choice
of four of them on top of which to put the remaining four. Evidently an appropriate choice corresponds to
a 4 x 4 permutation matrix with exactly one 1 on the main diagonal and one 1 on the main antidiagonal.
We consider the problem of enumerating the n x n permutation matrices having exactly one 1 on each of
the main diagonals. We also examine a related problem, that of enumerating permutation matrices with no
1 on either of the main diagonals; this has been solved using at least two different methods, one of which we
shall apply to the former problem.

Let [n] denote the set {1,...,n} and &, the set of permutations of [n]. A fixed point of ¢ € G, is an
i € [n] such that o(i) = i; a reflected point of ¢ is a j € [n] such that o(n—j+1) =j. In other words, 7 1s
fixed if it is the ith letter of the word o(1)a(2)...a(n) read left-to-right; j is reflected if it is the jth letter
of this word read right-to-left. Notice that if P = [p;;] is the permutation matrix corresponding to o, lL.e.,
if pij = 6j,(i), then each fixed point of o corresponds to a 1 on the main diagonal of P, and each reflected

point corresponds to a 1 on the main antidiagonal. We denote by X, the number of 0 € &, having no fixed

points and no reflected points, and by ¥, the number of ¢ € &, having exactly one fixed point and one

reflected point.

Our purpose is to determine X, and X, for arbitrary n > 0. We begin with X,, which counts permuta-
tion matrices having no 1 on either the main diagonal or the main antidiagonal. Formulas for X, have been
derived by S. Hertzsprung [1], using derangement numbers, and by J. Riordan [4], who derives a recurrence
using rook theory. We shall look at Hertzsprung’s approach first.

The Work of Hertzsprung

Hertzsprung’s paper appeared in 1879, well before the development of rook theory as a method for
enumeration of permutations with restricted positions. The paper begins with the solution of the problem:
How many terms appear in the formula for the determinant of an n x n matrix which has only Os on its
main diagonal? The answer, as is well-known now, is the derangement number Dy, := n! 3> p_o(=1)F/k!,
which also happens to be the integer nearest to n!/e. Hertzsprung then asks: How many terms appear in

{ Partially supported by NSA Grant MDA904-90-H-1010

PERMUTATIONS WITH UNIQUE FIXED AND REFLECTED POINTS S S &%?

ToDD SIMPSON{ | ’
Department of Mathematics ﬂ%/é

66



the formula for the determinant of an 7 x n matrix with only Os on both the main diagonal and the main
antidiagonal? Clearly, the number of terms in this formula is X,.

The key observation allowing Hertzsprung to arrive at his formula is that for the permutations being
counted, “no position is forbidden to more than two numbers, and two [distinct] positions forbidden to the
same number are also both forbidden to a certain other number. When these conditions hold, it is immaterial
whether the forbidden positions are stated for one number or for the other.” He considers permutations with
each position forbidden to either one or two numbers, and finds a formula for the number of such permutations
in terms of the derangement numbers. Next he observes that if i and j have a forbidden position in common,
then i + j = n + 1. The problem then splits into two cases, because if n is odd there is a position with only
one forbidden number, but if n is even all positions are forbidden to two numbers. His formulas for X, are

as follows:
[m/2] m!
2
Kim = 3 77 g ® P
i
[m/2] ' m!
Xomp1 = Z QM—ZJHW(S Dyp_o; 8’ ' Dy 2 +1,
ji=0 ’

where 6 Dy _Z o(=1¥ )Dk+2i~
Beginning with n = 0, we find the first few values of X, to be 1, 0, 0, 0, 4, 16, 80, 672, 4752, 48768,
440192. We may also obtain these values from the following recurrence formula, stated by Hertzsprung:

{ An —2)Xn_a (n even);

Xn = (0= DXt 49 9 — 1)Xn_y  (n odd).

This formula is mentioned by Muir in [3], but with the index n — 3 appearing where there should be n — 4.
The values given by Muir (through 4752) agree with those given by Hertzsprung, but the first few values
given by the misstated formula are 1, 0, 0, 0, 4, 16, 80, 672 4896 49920, 460032. The latter sequence
appears as sequence 1432 in [5] with a reference to Muir. Hertzsprung does not show how the recurrence
may be derived from his original formula: he claims that this would take too much space. We shall see that
Hertzsprung’s recurrence formula is valid, but will derive it using rook theory rather than derangements.
We will also use rook theory to compute 2.

Rook Theory; Formulas for X,, and X,

Suppose we have a positive integer n and a subset B of [n] x [n]. Let R(z) = ST rex® and Ha(l) =
> hnit®, where for each k > 0 we define

e = [{P € B :|P| =k and no two elements of P have a common coordinate}|,

hnk = |{o € &, : (4,0(i)) € B for exactly k values of i € [n]}].

Evidently R(z) and H,(t) are polynomials of degree at most n. Observe also that R(z) depends only on B
(so long as n is large enough that [n] x [n] contains B), but Hy(t) depends on B and n.

We often call B a board. This is because we think of it as a sort of chessboard, upon which we try to
place rooks in such a way that none can attack another. The number of ways to do this with k rooks is ry;
therefore we call R(z) the rook polynomial of B. The function H,(t) is the hit polynomial of B and n; the
number of ways to place n rooks on the board [n] x [n] so that none can attack another and exactly k of
them ‘hit’ B is h,,x. We think of B as defining restricted positions for permutations of [n]: if (7, ) € B, we
have the restriction “o(i) # j,” or equivalently, “j cannot be in the ith position of the word of ¢.” From

2



this point of view h,; is the number of ¢ € &, which violate exactly k of the restrictions imposed by B.
We are most often interested in finding hno = H,(0), the number of ¢ which do not violate any restrictions.

Although we are more interested in the hit polynomial, it is the rook polynomial that is usually easier
to compute for a given B. The idea of rook theory is to establish connections between the two polynomials
and to use properties of one to determine properties of the other. The following theorem, whose proof may

be found in [4], is of fundamental importance.

Theorem. Let B C [n] x [n]. If R(z) = ¥ r¢a* is the rook polynomial of B, then the hit polynomial
Hp(t) of B and nis 3 re(n — k)I(2 — 1)F.

If we define a symbolic operator E such that E¥ = 3!, then the theorem states that if R(z) = S et
then H,(t) = 37 E™~*(t — 1)¥; we may rewrite this as H,(t) = E"R(E~'(t — 1)). In particular, we have
hno = E"R(—E1).

Suppose B, and B, are boards with no common coordinates; i.e., for any (i1,71) € By and (42, j2) € B>
we have 4, # j; and iz # j2. Then we shall say B, and B; are disjoint. If B is the union of disjoint boards
B, and B, then any placement of j non-attacking rooks on B; and of k£ non-attacking rooks on B, will
correspond to a placement of j + k non-attacking rooks on B. This observation leads directly to the useful
result, that if B; and B, are disjoint, with Ry(z) and Ry(z) their respective rook polynomials, then the
rook polynomial of B1 U B, is Ri(z)Ra(z).

Now we are prepared to apply rook theory to the problems of computing X, and X,. Let A, =
{(G,1),(i,n—i4+1):1 < i< n} C[n]x[n]. We find that %, is the union of either [n/2] or |n/2] +1 disjoint
boards, according as n is even or odd: in each case, we have the boards {(3,), (i,n —i+1),(n—i+1,7),(n—
i+1,n—i+ 1)} for 1 <3< [n/2], and if n is odd we also have the board {((n + 1)/2, (n+1)/2)}.

It is easy to see that any board of the form {(i, k), (s,1),(4,k),(4,1)}, with i # j and k # 1, has rook
polynomial 1 + 4z + 222, and that any board consisting of a single point has rook polynomial 1 4+ z. It
follows that for m > 0, the rook polynomials of 2sm and Usmy1 are respectively (1+ 42+ 2z%)™ and
(1+ 4z + 222)™(1 4 z). Now observe that the constant terms of the corresponding hit polynomials are Xs.,

and Xa,,41. By virtue of the theorem above, we have the following symbolic formulas:

Xom = (E* —4E + 2)™, (1)
Xomyr = (E® —4E+2)™(E - 1), (2)

where E* = il.

The situation is slightly more complicated in the case of X,. There are two kinds of permutations
enumerated by X,: those for which the fixed point is different from the reflected point, and those for which
the two points coincide. The second kind exist only for odd n, as a point 2 that is both fixed and reflected
must satisfy i = n — ¢+ 1.

The following figure will help to illustrate our strategy for computing L. It depicts [r] X [n], but
with the rows and columns indexed in an unusual way; we can see that each 2 x 2 ‘block’ of horizontally-
and vertically-shaded squares corresponds to a factor 1+ 4z + 222 in the rook polynomial of 2, while the
doubly-shaded square corresponds to the factor 1 + z, which appears iff nis odd. The shading describes
whether a point in 2, is of the form (i, %), (i,n — ¢+ 1), or both.
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if nodd
1 n 2 n-l --- .- (n+1¥2

n-n2 k1

if nedd
(n+1)2 | | | |

FIGURE 1

We will compute £, by counting placements of n non-attacking rooks on [r] x [n] such that either (a)
there is one rook on a horizontally-shaded square, one rook on a vertically-shaded square, and n — 2 rooks
on unshaded squares, or (b) there is one rook on the doubly-shaded square and n — 1 rooks on unshaded
squares.

In case (a), we shall have the same number of placements for each possible choice of the two shaded
squares. These two squares must not be in the same row or the same column. This condition is equivalent to
their being in different 2 x 2 blocks in Figure 1. The number of ways to choose the blocks is |n/2|(|n/2] —1),
and once they have been chosen, we have two horizontally-shaded squares in the first block and two vertically-
shaded squares in the second block from which to choose. We have shown that there are 4|n/2]|(|n/2) —1)¥n
placements of the type described by (a), where ¥, denotes the number of such placements with rooks on the
shaded squares (1,1) and (2,n — 1).

Now to evaluate ¥, we remove the 1st and 2nd rows and the 1st and (n — 1)st columns from Figure 1,

which gives us the following;:

if nodd
n 2 3 n2 - (n+1¥2
. b
—
n-1
3
n-2
[n/2]
n-ln/2+1
if nodd
(n+1¥2 | | | l

FIGURE 2



The placements enumerated by 4, correspond to placements of n — 2 rooks on the board in Figure 2 such
that none of the rooks is on a shaded square. We see that the rook polynomial associated with Figure 2 is
(1+ 4z + 222)™=2(1 + 2)? if n = 2m is even, (1 +4z + 22%)™%(1 + 2)? if n = 2m + 1 is odd. Therefore we
have am = (B —4E 4 2)""2(E — 1)? and ¢am41 = (E? —4E + 2)m=2(E —1)3.

We now consider case (b), which occurs only if n = 2m + 1 is odd. By removing the row and column
containing the doubly-shaded square, we find that the placements described by (b) correspond to placements
of 2m rooks on [2m] x [2mn] with none on As,,; the number of such placements is just Xom. (This is why the
problem of enumerating permutations with unique fixed and reflected points led us to consider permutations
with no fixed or reflected points.)

Combining the two cases, we can give formulas for X, in terms of the symbol E:

Zam = 4m(m — 1)(E? — 4E + 2)™"%(E - 1)% (3)
Somy1 = 4m(m = 1)(E? —4E 4+ 2)""3(E - 1) + (E* —4E+2)™. (4)

We shall now derive several recurrence formulas involving X, and Xy, including Hertzsprung’s formulas
for X,,. Our strategy is a simplified version of what Riordan does in [4], pp. 186-187; indeed, he computes
recurrences for the hit polynomials of 2,,, and when we put ¢ = 0 in these, we get recurrences for X,. We
will derive recurrences that involve only X,, and X,.

Recall that if 8B C [n] x [n] has rook polynomial R(z), then E"R(—E~') is the constant term of the
corresponding hit polynomial. We have that E' = iE*~! for any i > 0; by linearity of differentiation, this
implies that if P(z) is any polynomial and P’(z) its derivative with respect to z, then

P(E) = P'(E)+ P(0). (5)

For X,, the polynomials to which we apply (5) are (z®—4z+2)™ and (z? =4z +2)™(z—1), for n = 2m
and n = 2m + 1 respectively. Considering the first of these, we see that

d
d—(zz — 4z +2)™ = m(z? — 4z +2)"" (22 — 4)
Z

=2m(z? -4z +2)" Nz - 1) - om(e? — 4z 4+ 2)"7 Y

this gives us
Xom = 2m(Xom—1 — Xom-2) + 27 (6)

Similarly, one can write

d%[(r2 —dr+ )"z - 1)) = 2m+ 1)(z — 4o+ 2)™ + 2m((2? — 4z +2)" 7 (2 = 1) + (2 — 4z + 2)7 7Y,

and this gives us
X2m+l = (2m + ]-)XQm + 2"n(){Zm—l + XZm—Z) —2m,

Now using (6), we can rewrite the latter equation to eliminate the 2™-term, and after simplifying we obtain

X2m+l = Qm(Xgm + 2X2m—1)) (7)

which is one of Hertzsprung’s formulas and which also appears in [4].
We can also use (6) to rewrite itself, by observing that 27 = 2(2m71) = 2[Xom_2 — (2m — 2} (Xom-3 —
Xam_a)]; substituting this into (6) gives us

Xom =2mXom—1 — (2771 — 2)X2m_2 — 2(2m - 2)X2m_3 + 2(27’72 — Q)Xgm_44
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We substitute into the latter equation (7), with m replaced by m — 1, to obtain
Xom = (2m — 1)X2m_1 + 2(2m — Q)Xgm_‘;, (8)

the second of Hertzsprung’s formulas.

Our last recurrence for X,, involves only even values of n and, like (7), is a special case of a recurrence
given in [4] for hit polynomials. (Formula (8) does not appear in Riordan’s work.) If we iterate (5), we
obtain the identity P(E) = P"(E)+ P'(0) + P(0). We combine this with the identity

d2
m(anz —dz 4 2)" = 2m(2m — 1)(2® — 4z + 2)™" 1 + 8m(m — 1)(z® — 4z + 2)"?

to derive

Xom = 2m(2m — 1) Xom—2 + 8m(m — 1) Xom_a + 27 — m2™*+1. (9)

We now consider the case of 5,,. The formulas we give here are not recurrences, because they do not
express T, in terms of L, for certain m < n; rather, they express X, in terms of X,, for m < n. We have
not succeeded in coming up with recurrence formulas for X,.

Let n = 2m > 4 be even, and observe that we may write

(B —4E+2)" %(E —1)? = (B —4E+2)™" ' + 2(B* —4E+ )" *(E - 1) + (B2 —4E +2)™7%
thus we have

Dom = 4m(m — 1)(Xom—2 + 2X2m-3 + Xam-4)
=2mXom_1 + 2771(2777. — Q)Xgm_4
:m(Xgm —(2m—3)X2m_1). (10)

In case n is odd, n = 2m + 1 > 5, we write

(B2 —4E+2)" HE -1 = (B> —4E+2)" " H(E - 1) + 2E? —4E +2)™ !
F5(EY —4E +2)"3(E — 1)+ 2(E* —4E+2)" 7%,

and go on to obtain

Domg1 = Xam +4m(m — 1)(Xom-1 + 2Xam-2 + 5Xom-3 + 2Xom—4)
= Xom + 2m((2m — 1) Xom—1 + 2(2m — 2) Xam—4) — 2mXzm_1
+5m(2m — 2)(Xam—2 + 2Xom-3) — 2m(m — 1) Xom-2
= (2m + 1) Xom + 3mXom-1 — 2m(m — 1) Xam-2. (11)

We conclude this section with a table of some of the first few values of X, and X,.

n X
P2t /!

0 1

1 0

2 0

3 0

4 4




&

5 16 20
6 80 96
7 672 656
8 4752 5568
9 48768 48912
10 440192 494080

11 5377280 5383552
12 59245120 65097600

Concluding Remarks

We have found formulas that will tell us, for any n, how many permutations of n have exactly one fixed
and one reflected point. We now consider ways in which our work could be improved upon or extended.

Concerning X,, we used rook theory to prove Hertzsprung’s recurrence formulas; he could not have
done it this way, and he does not give any clues as to how he did it. Also, the techniques we have employed
do not give a clear indication of how one could prove (7) and (8) combinatorially, although the simplicity
of these formulas suggests that they should have combinatorial interpretations. In particular, Hertzsprung
notes the similarity between the formula X, = (n — 1)(Xn-1 + 2X,—2), which holds for odd n, and the
formula D, = (n —1)(Dy—1 + Drn_2) involving derangement numbers. The latter has a simple combinatorial
proof; perhaps the former does too.

The machinery we have developed gives us concise formulas for X, and Xy in terms of the symbol E,
and it allows us to derive recurrence formulas for X,,. But it is not so helpful when we try to find recurrences
satisfied by £,. We expected that X, like X,, could be given by a homogeneous recurrence relation of
constant order, whose coefficients were polynomialsin n; but the data do not seem to suggest such a relation.
Nor do the data suggest how we could express X, in terms of Xy, for m <n (if we could do this, we could
combine it with (10) and (11) to get recurrences for Xy,). Perhaps a new approach is called for to decide
whether there are recurrence formulas for X,. We now offer one possibility, although it is not immediately
clear how useful it will be.

Recall that we began by considering permutations of [n] that ‘hit’ the board 2, exactly once on each
diagonal. We could not use rook theory directly, because it does not distinguish between diagonals. Some
permutations that hit 2, twice hit it once on each diagonal, some hit it twice on a single diagonal and
miss the other. If n is odd, it is possible for a permutation that hits 2, only once to hit both diagonals.
This suggested the possibility of rook polynomials and hit polynomials in several variables, each variable
corresponding to some sub-board of a given board. We shall show how this can be done in the two-variable
case, and it will generalize readily to more variables.

Suppose we are given Bz, By C [r] x [n]; then we define R(z,y) = S rijaty’, where ry; is the number
of ways to place i rooks on B, and j rooks on By such that none can attack another. We also define
Hn(s,1) = 5 hnijsit?, where hyj is the number of ways to place n non-attacking rooks on [n] x [n] with
exactly i on B, and exactly j on B,. We shall call R(z, y) the rook polynomial of B, and By, and H,(s,1)
the hit polynomial of n, B, and B,. We have the following theorems, which may be proved in much the

same way as the corresponding theorems for the single-variable case:

Theorem A. Suppose B, UBy, and Boz UBgy have no common coordinate, and let R;(z,y) be the
rook polynomial of B;, and B;y for ¢ = 1,2. Then Ry(z, y)Ra(z, y) is the rook polynomial of Bz UBsoz
and By U Bay.



Theorem B. Let B,,B, C [n] x [n] and B, NB, = 0. If R(z,y) = 3. ri;2’'y’ is the rook polynomial
of B, and By, then the hit polynomial H,(s,t) of B, By, and nis 5 rij(n —i— 5)(s — 1) (t — 1).

Another way of stating Theorem B is that if B, NB, = 0, then H,(s,t) = E*R(E~Y(s—1), E~1(t-1)).
If B;NBy is not empty, this result need not hold; for B, = B, = {(4,5)} C [1n] x[n], we have rook polynomial
1+ zy and hit polynomial £ 4+ E™~1(st —1). (Theorem A does not require B;; N B;, to be empty.)

Now to see what this has to do with Z,, we define A, = {(7,1) : 1 <i < n} and Any = {(5,n—i+1) :
1 <i < n}. With [n] x [n] depicted as in Figure 1, we have that 2, consists of all vertically-shaded squares
and A,y consists of all horizontally-shaded squares. (The doubly-shaded square is both horizontally- and
vertically-shaded.) Evidently the rook polynomial of each 2 x 2 block of shaded squares is 1+ 2z 4 2y+z2+y2,
while the doubly-shaded square has rook polynomial 1 4+ zy. From the theorems above, we see that the hit
polynomial Hy(s,t) of n, An, and An, is given by the following formulas:

Hom(s,t) = (B2 +2E((s = )+ (t = 1)) + (s — 1) + (t — 1)>)™;
Homy1(s,1) = (E* +2E((s = 1)+ (t = 1)) + (s = D)2+ (t = D)™(E + st — 1).

From the definition of Ay, and 2y, we see that the coefficient of st in H,(s,t) will be the number of
permutations of [rn] having exactly one fixed and one reflected point—i.e., £,. It is not hard to compute the
coefficient of st from the formulas above and to verify that it agrees with our previously obtained formula
for 2,,.
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~ Man faar af disse Formler
,=1, I,=0, II,=0, O,=0, I,=4, Il;=16, II;— 80,
I, =672, Oy = 4752, II, = 48768, Il,o = 440192 o. 5. V.
hvilke Verdier ogsaa kunne beregnes skiftevis af
Oy = 2m — 1) [y, 4 20@2m — 2) Iy, 4
08 Moy, 4. = 2m Loy, ~+4m Iy, 1
Disse Ligningers Udledelse skal for Pladsens Skyld her forbigaas.
Den sidste viser, naar den skrives under Formen
o,=n—1)UL,_,+2 II, o), n ulige,
sit Slegtskab med den ovenfor fundne
wp=(n—1) (0,1 + By__o)

Jeg vilde gjerne benytte denne Lejlighed til at henlede .Opmérk-
somheden paa en, som det synes, hermed beslegtet, men vistnok ﬁlige
vanskeligere Opgave, der, saavidt jeg ved, endnu bestandig henstaar
ulest. Det er det saakaldte «Dronningproblems paa Skakbrazdtet, eller
i algebraisk Form folgende: Paa hvormange Maader kan man opstille
Tallene 1, 2, 3, 4....7n i Rekko saaledes, at Differensen mellem
to hvilke som helst af Tallene skal vere numerisk forskjellig fra
Differensen mellem Numrene paa de Pladser, hvorpaa de staa?

Om denne Opgaves Indviklethed faar man en Forestilling, naar
man blot forseger at finde Antallet af Opstillinger med den simplere
Betingelse, at to Tal, hvis Differens er + 1, ikke maa staa ved
Siden af hinanden. Det vil allerede veare af Interesse, om dette sidst-
nzvote Antal kan fremstilles som en ikke altfor sammensat Funk-

tion af 7, og Spergsmaalet anbefales derfor Tidsskriftets Laesere.

EXAMENSOPGAVER.

De lz=rde Skolers Afgangsexamen [878.
Beregningsopgave.

3 b
At eV cosx 4 Veosy __ 5,6046

¥

s
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.3 ) 3
o) 56Vcosx_+_261/cosy

== 16,7655, hvor ¢ — 2,71828
808%S z og Y.

Opl. Da -
ere Rodderne i

) 3
Veosz 4~V
10€ FVeosy _ g6 046,

u? — 16,7655 u - 56,046 — 0

R 3
Verdier of § &' ©0°% og 9 Veosy,

Man faar
u = 8,38275 + V14,2244975025

— 838275 + 3,77154 — | 1 15498
4,61121
(Her ere alle \Decimaler under Rodtegnet fundph
sesverdien 14,2245 \giver ved Logarithmer sammé
Man har nu enteh

; men Tilnermel-
Resultat for w).

:
— 1215429 og 269°Y — 461191
log 2,430868\3
log 2,71828
log cos = — 9,85441

x = 44° 20’ 354

1
1 5 chosx
altsaa  cos x — ( log 2,30561)3
log 2,71828
log cosy — 9,78550
y = 52° 234 35«

C.S‘y=(

eller

2) 5 el'cos e

“

3
— 461121 /og 2N/

7 = 12,15429
altsaa  cos & — k;zg 2’3222 i cosy — (20.9 6:07715)3
g 2,71898 log 2,71828) -

Men da her cosy > 1, ksfi denne Oplesning 1xke bruges

Arithmoetik.
I Liguingerde x4y=t
' ax - by =u

a’z -+ b2y — vy
ere a og/b bekjendte‘ulige store, =, ¥, ¢, u, v ubekjondte Sterrelfe
Hvilken /Betingelse maa ¢, «, v opfylde,

: for at z og y skulle kunne
estepimes saaledes, at de tre Ligninger ere tilfredsstilleda?
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.The expansion in its limiting form,—that is, when » = n,—
might have been called by Cunningham a ‘symbolic inversion’

of Cayley’s expansion of 1847 (Hust., il. p. 42).

- DICKSON, J. D. H. (1879).

[Disc:ussion of two double series arising from the number of terms
in determinants of certain forms. Proceed. London Math. Soc.

x. pp. 120-122.] : ’
The first determinant dealt with is Cunningham’s of 1874. The
same recurrence-formula is obtained, and others less important.

A table of the values of u,, is given, although of course it is merely
a table of the differences of 1-2-3 ... n.

The otl.ler determinant is that which has zeros in the first r places
of_the primary diagonal and in the first 7—1 places of the adjacent
minor diagonal. The number of terms being v, ,, it is stated that

) Var = Unprp + 2vﬂ—l .r+ Un_o,r-1)
also that

vn,n = (n_1)(vﬂ—l,n—l+vn—2.n—2) + vn4,n4;
and the values are tabulated as far as v, .
We may note in passing that the ¥ of Muir’s paper of 1877

" 1is such that

’Un,n— Un_y n-1 = \If (TL)

HERTZSPRUNG, S. (1879).
[Losning og Udvidelse af Opgave 402. Tidskrift for BMath.,
: (4) iii. pp. 134-140.]

After a short statement of the facts regarding the simpler problem
Hertzsprung raises the question of the number of terms n a determinant
whose two diagonals contarn nothing but zero elements. From the
outset, however, he views it as the problem of finding the number of

J
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ar%angemenis of the counters, 1,2, ..., 1, subject to the conditions that
in every case the k™ counter shall occupy neither the k* place from
the beginning nor the k™ place from the end, and determinants are

not in any way reforred to. His final result is the recurrence- . °

formula

Wy = ('n— 1)1071—1 + {Q(n— 2) s fOI‘ m even,

2 (n—1) Wy, forn odd ;
so that, since w, = 0, wy = 0, wy = 4, he finds

wy = 16, wg = 80, wy, = 672, wy = 4752,

HANSTED, B. (1880).

[Trois théorémes relatifs & Ja théorie des nombres. Journ. de sci.
math. e astron., ii. pp. 154-164.]
The second theorem established (pp. 156-158) is that the number
of terms in an n-line zero-axial determinant is the nearest integer
tonted

SZUTS, N. v. (1888).

[Zur Theorie der Determinanten. Math. Annalen, xxxiil.
pp. 477-492.]

The chief object of the author here is to generalize Weyrauch’s
result of 1871, and this with a wealth of formulae he fully effects.
He is unaware, however, of Cunningham’s paper of 1874 and Dickson’s -
of 1878. The way in which he formulates their and his principal
result is: The number of mon-zero terms in an n-line determinant
having T zeros in ils main diagonal s the (n—r+1)* member of the
™ row of differences of B

1, 1!, 2:i 3 ¢!




