login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006980 Compositions: 6th column of A048004.
(Formerly M1411)
7
1, 2, 5, 12, 28, 64, 143, 315, 687, 1485, 3186, 6792, 14401, 30391, 63872, 133751, 279177, 581040, 1206151, 2497895, 5161982, 10646564, 21919161, 45052841, 92461171, 189489255, 387830160, 792810956, 1618840800, 3301999647 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 6..1000

J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)

Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1,-2,-4,-5,-4,-3,-2,-1).

FORMULA

G.f.: x^6 / ((1-x-x^2-x^3-x^4-x^5) * (1-x-x^2-x^3-x^4-x^5-x^6)). - Alois P. Heinz, Oct 29 2008

MAPLE

a:= n-> (Matrix(11, (i, j)-> if i=j-1 then 1 elif j=1 then [2, 1, 0, -1, -2, -4, -5, -4, -3, -2, -1][i] else 0 fi)^n) [1, 7]: seq(a(n), n=6..40); # Alois P. Heinz, Oct 29 2008

PROG

(PARI) Vec(1/(1-x-x^2-x^3-x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Jan 10 2013

CROSSREFS

Sequence in context: A320590 A006979 A019301 * A045623 A290990 A001410

Adjacent sequences:  A006977 A006978 A006979 * A006981 A006982 A006983

KEYWORD

nonn,easy

AUTHOR

Simon Plouffe

EXTENSIONS

Corrected definition: 6th column of A048004. - Geoffrey Critzer, Nov 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 17:23 EST 2019. Contains 319250 sequences. (Running on oeis4.)