login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006943 Rows of Sierpinski's triangle (Pascal's triangle mod 2).
(Formerly M4802)
6

%I M4802

%S 1,11,101,1111,10001,110011,1010101,11111111,100000001,1100000011,

%T 10100000101,111100001111,1000100010001,11001100110011,

%U 101010101010101,1111111111111111,10000000000000001,110000000000000011

%N Rows of Sierpinski's triangle (Pascal's triangle mod 2).

%C The rows of Sierpinski's triangle, read as numbers in binary representation, are products of distinct Fermat numbers, row 0 being the empty product. (See also the comment in A080176.)

%C Rows 1 to 31 are the binary representation of the 31 (2^5-1) non-empty products of distinct Fermat primes, giving the number of sides of constructible (with straightedge and compass) odd-sided polygons. - _Daniel Forgues_, Jun 21 2011

%C Sierpinski's triangles typically refer to any finite triangle with rows 0 to 2^n-1 so as to get complete triangles, with n at least 4 so as to show the fractal-like pattern of nested triangles. We may consider these finite Sierpinski's triangles as finite parts of "the" infinite Sierpinski's triangle, so to speak. - _Daniel Forgues_, Jun 22 2011

%D C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 353.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A006943/b006943.txt">Table of n, a(n) for n = 0..200</a>

%H Antti Karttunen, <a href="http://ndirty.cute.fi/~karttu/matikka/A048757/A048757.htm">On Pascal's Triangle Modulo 2 in Fibonacci Representation</a> (Abstract). (For Denton Hewgill's identity)

%H OEIS Wiki, <a href="/wiki/Sierpinski&#39;s_triangle">Sierpinski's triangle</a>

%H V. Shevelev, <a href="http://arxiv.org/abs/1011.6083">On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization</a>, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29.

%F From _Daniel Forgues_, Jun 20-21 2011: (Start)

%F In the following formulae, [...]_2 means converted to base 2.

%F a(n) = [sum_(i=0..n) (binom(n,i) mod 2) 2^i]_2, n >= 0.

%F From row n, 0 <= n <= 2^k - 1, k >= 0, being

%F a(n) = [prod_(i=0..k-1) (F_i)^(alpha_i)]_2, alpha_i in {0, 1},

%F where for k = 0, we get the empty product, i.e. 1, giving a(0) = 1,

%F we induce from the triangle that row 2^k + n, 0 <= n <= 2^k - 1, is

%F a(2^k + n) = a(n)*[F_k]_2, k >= 0.

%F Denton Hewgill's identity: (Cf. links)

%F a(n) = [prod_{i>=0} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1.

%F a(0) = 1; a(n) = [prod_{i=0..floor(log_2(n))} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1, n >= 1. (End)

%F From _Vladimir Shevelev_, Dec 26-27 2013: (Start)

%F sum_{n>=0} 1/a(n)^r = prod_{k>=0} (1 + 1/(10^(2^k)+1)^r),

%F sum_{n>=0} (-1)^A000120(n)/a(n)^r = prod_{k>=0} (1 - 1/(10^(2^k)+1)^r), where r>0 is a real number.

%F In particular,

%F sum_{n>=0} 1/a(n) = prod{k>=0} (1 + 1/(10^(2^k)+1)) = 1.10182034...;

%F sum_{n>=0} (-1)^A000120(n)/a(n) = 0.9

%F a(2^n)=10^(2^n)+1, n>=0.

%F Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations a(2^t*n+2^(t-1)) = 99*(10^(2^(t-1)+1))/(10^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t>=2. In particular, for t=2,3,4, we have the following formulas:

%F a(4*n+2) = 101*a(4*n);

%F a(8*n+4) = 10001/101*a(8*n+2);

%F a(16*n+8)= 100000001/1010101*(16*n+6), etc. (End)

%e From _Daniel Forgues_, Jun 20 2011: (Start) Terms as products of distinct Fermat numbers in binary representation (Cf. A080176 comment) (Cf. Sierpinski's triangle on OEIS Wiki):

%e a(0) = 1 = (empty product);

%e a(1) = 11 = F_0;

%e a(2) = 101 = F_1;

%e a(3) = 1111 = 11*101 = F_0*F_1;

%e a(4) = 10001 = F_2;

%e a(5) = 110011 = 11*10001 = F_0*F_2;

%e a(6) = 1010101 = 101*10001 = F_1*F_2;

%e a(7) = 11111111 = 11*101*10001 = F_0*F_1*F_2. (End)

%p A006943 := proc(n) local k; add((binomial(n,k) mod 2)*10^k, k=0..n); end;

%t f[n_] := FromDigits@ Mod[Binomial[n, Range[0, n]], 2]; Array[f, 17, 0] (* _Robert G. Wilson v_, Jun 26 2011 *)

%Y Cf. A080176 for Fermat numbers in binary representation.

%Y Cf. A001317 for the decimal representation of A006943.

%Y Cf. A249183.

%K nonn,easy,changed

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Aug 21 2000

%E Edited by _Daniel Forgues_, Jun 20 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 13:03 EST 2014. Contains 250359 sequences.