login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006943 Rows of Sierpiński's triangle (Pascal's triangle mod 2).
(Formerly M4802)
6

%I M4802

%S 1,11,101,1111,10001,110011,1010101,11111111,100000001,1100000011,

%T 10100000101,111100001111,1000100010001,11001100110011,

%U 101010101010101,1111111111111111,10000000000000001,110000000000000011

%N Rows of Sierpiński's triangle (Pascal's triangle mod 2).

%C The rows of Sierpiński's triangle, read as numbers in binary representation, are products of distinct Fermat numbers, row 0 being the empty product. (See also the comment in A080176.)

%C Rows 1 to 31 are the binary representation of the 31 (2^5-1) non-empty products of distinct Fermat primes, giving the number of sides of constructible (with straightedge and compass) odd-sided polygons. - _Daniel Forgues_, Jun 21 2011

%C Sierpiński's triangles typically refer to any finite triangle with rows 0 to 2^n-1 so as to get complete triangles, with n at least 4 so as to show the fractal-like pattern of nested triangles. We may consider these finite Sierpiński's triangles as finite parts of "the" infinite Sierpiński's triangle, so to speak. - _Daniel Forgues_, Jun 22 2011

%D C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 353.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A006943/b006943.txt">Table of n, a(n) for n = 0..200</a>

%H Antti Karttunen, <a href="http://ndirty.cute.fi/~karttu/matikka/A048757/A048757.htm">On Pascal's Triangle Modulo 2 in Fibonacci Representation</a> (Abstract). (For Denton Hewgill's identity)

%H OEIS Wiki, <a href="/wiki/Sierpinski&#39;s_triangle">Sierpinski's triangle</a>

%H V. Shevelev, <a href="http://arxiv.org/abs/1011.6083">On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization</a>, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29.

%F From _Daniel Forgues_, Jun 20-21 2011: (Start)

%F In the following formulae, [...]_2 means converted to base 2.

%F a(n) = [sum_(i=0..n) (binom(n,i) mod 2) 2^i]_2, n >= 0.

%F From row n, 0 <= n <= 2^k - 1, k >= 0, being

%F a(n) = [prod_(i=0..k-1) (F_i)^(alpha_i)]_2, alpha_i in {0, 1},

%F where for k = 0, we get the empty product, i.e., 1, giving a(0) = 1,

%F we induce from the triangle that row 2^k + n, 0 <= n <= 2^k - 1, is

%F a(2^k + n) = a(n)*[F_k]_2, k >= 0.

%F Denton Hewgill's identity: (Cf. links)

%F a(n) = [prod_{i>=0} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1.

%F a(0) = 1; a(n) = [prod_{i=0..floor(log_2(n))} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1, n >= 1. (End)

%F From _Vladimir Shevelev_, Dec 26-27 2013: (Start)

%F sum_{n>=0} 1/a(n)^r = prod_{k>=0} (1 + 1/(10^(2^k)+1)^r),

%F sum_{n>=0} (-1)^A000120(n)/a(n)^r = prod_{k>=0} (1 - 1/(10^(2^k)+1)^r), where r>0 is a real number.

%F In particular,

%F sum_{n>=0} 1/a(n) = prod{k>=0} (1 + 1/(10^(2^k)+1)) = 1.10182034...;

%F sum_{n>=0} (-1)^A000120(n)/a(n) = 0.9

%F a(2^n) = 10^(2^n)+1, n>=0.

%F Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations a(2^t*n+2^(t-1)) = 99*(10^(2^(t-1)+1))/(10^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t>=2. In particular, for t=2,3,4, we have the following formulas:

%F a(4*n+2) = 101*a(4*n);

%F a(8*n+4) = 10001/101*a(8*n+2);

%F a(16*n+8)= 100000001/1010101*(16*n+6), etc. (End)

%e From _Daniel Forgues_, Jun 20 2011: (Start)

%e Terms as products of distinct Fermat numbers in binary representation (Cf. A080176 comment) (Cf. Sierpiński's triangle on OEIS Wiki):

%e a(0) = 1 = (empty product);

%e a(1) = 11 = F_0;

%e a(2) = 101 = F_1;

%e a(3) = 1111 = 11*101 = F_0*F_1;

%e a(4) = 10001 = F_2;

%e a(5) = 110011 = 11*10001 = F_0*F_2;

%e a(6) = 1010101 = 101*10001 = F_1*F_2;

%e a(7) = 11111111 = 11*101*10001 = F_0*F_1*F_2. (End)

%p A006943 := proc(n) local k; add((binomial(n,k) mod 2)*10^k, k=0..n); end;

%t f[n_] := FromDigits@ Mod[Binomial[n, Range[0, n]], 2]; Array[f, 17, 0] (* _Robert G. Wilson v_, Jun 26 2011 *)

%Y Cf. A080176 for Fermat numbers in binary representation.

%Y Cf. A001317 for the decimal representation of A006943.

%Y Cf. A249183.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Aug 21 2000

%E Edited by _Daniel Forgues_, Jun 20 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 03:16 EDT 2015. Contains 261112 sequences.