login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006943 Rows of Sierpinski's triangle (Pascal's triangle mod 2).
(Formerly M4802)
5

%I M4802

%S 1,11,101,1111,10001,110011,1010101,11111111,100000001,1100000011,

%T 10100000101,111100001111,1000100010001,11001100110011,

%U 101010101010101,1111111111111111,10000000000000001,110000000000000011

%N Rows of Sierpinski's triangle (Pascal's triangle mod 2).

%C The rows of Sierpinski's triangle, read as numbers in binary representation, are products of distinct Fermat numbers, row 0 being the empty product. (See also the comment in A080176.)

%C Rows 1 to 31 are the binary representation of the 31 (2^5-1) non-empty products of distinct Fermat primes, giving the number of sides of constructible (with straightedge and compass) odd-sided polygons. - _Daniel Forgues_, Jun 21 2011

%C Sierpinski's triangles typically refer to any finite triangle with rows 0 to 2^n-1 so as to get complete triangles, with n at least 4 so as to show the fractal-like pattern of nested triangles. We may consider these finite Sierpinski's triangles as finite parts of "the" infinite Sierpinski's triangle, so to speak. - _Daniel Forgues_, Jun 22 2011

%D C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 353.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A006943/b006943.txt">Table of n, a(n) for n = 0..200</a>

%H Antti Karttunen, <a href="http://ndirty.cute.fi/~karttu/matikka/A048757/A048757.htm">On Pascal's Triangle Modulo 2 in Fibonacci Representation</a> (Abstract). (For Denton Hewgill's identity)

%H OEIS Wiki, <a href="/wiki/Sierpinski&#39;s_triangle">Sierpinski's triangle</a>

%H V. Shevelev, <a href="http://arxiv.org/abs/1011.6083">On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization</a>, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29.

%F From _Daniel Forgues_, Jun 20-21 2011: (Start)

%F In the following formulae, [...]_2 means converted to base 2.

%F a(n) = [sum_(i=0..n) (binom(n,i) mod 2) 2^i]_2, n >= 0.

%F From row n, 0 <= n <= 2^k - 1, k >= 0, being

%F a(n) = [prod_(i=0..k-1) (F_i)^(alpha_i)]_2, alpha_i in {0, 1},

%F where for k = 0, we get the empty product, i.e. 1, giving a(0) = 1,

%F we induce from the triangle that row 2^k + n, 0 <= n <= 2^k - 1, is

%F a(2^k + n) = a(n)*[F_k]_2, k >= 0.

%F Denton Hewgill's identity: (Cf. links)

%F a(n) = [prod_{i>=0} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1.

%F a(0) = 1; a(n) = [prod_{i=0..floor(log_2(n))} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1, n >= 1. (End)

%F From _Vladimir Shevelev_, Dec 26-27 2013: (Start)

%F sum_{n>=0} 1/a(n)^r = prod_{k>=0} (1 + 1/(10^(2^k)+1)^r),

%F sum_{n>=0} (-1)^A000120(n)/a(n)^r = prod_{k>=0} (1 - 1/(10^(2^k)+1)^r), where r>0 is a real number.

%F In particular,

%F sum_{n>=0} 1/a(n) = prod{k>=0} (1 + 1/(10^(2^k)+1)) = 1.10182034...;

%F sum_{n>=0} (-1)^A000120(n)/a(n) = 0.9

%F a(2^n)=10^(2^n)+1, n>=0.

%F Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations a(2^t*n+2^(t-1)) = 99*(10^(2^(t-1)+1))/(10^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t>=2. In particular, for t=2,3,4, we have the following formulas:

%F a(4*n+2) = 101*a(4*n);

%F a(8*n+4) = 10001/101*a(8*n+2);

%F a(16*n+8)= 100000001/1010101*(16*n+6), etc. (End)

%e From _Daniel Forgues_, Jun 20 2011: (Start) Terms as products of distinct Fermat numbers in binary representation (Cf. A080176 comment) (Cf. Sierpinski's triangle on OEIS Wiki):

%e a(0) = 1 = (empty product);

%e a(1) = 11 = F_0;

%e a(2) = 101 = F_1;

%e a(3) = 1111 = 11*101 = F_0*F_1;

%e a(4) = 10001 = F_2;

%e a(5) = 110011 = 11*10001 = F_0*F_2;

%e a(6) = 1010101 = 101*10001 = F_1*F_2;

%e a(7) = 11111111 = 11*101*10001 = F_0*F_1*F_2. (End)

%p A006943 := proc(n) local k; add((binomial(n,k) mod 2)*10^k, k=0..n); end;

%t f[n_] := FromDigits@ Mod[Binomial[n, Range[0, n]], 2]; Array[f, 17, 0] (* _Robert G. Wilson v_, Jun 26 2011 *)

%Y Cf. A080176 for Fermat numbers in binary representation.

%Y Cf. A001317 for the decimal representation of A006943.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Aug 21 2000

%E Edited by _Daniel Forgues_, Jun 20 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 22 08:01 EDT 2014. Contains 247043 sequences.