This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006943 Rows of Sierpiński's triangle (Pascal's triangle mod 2). (Formerly M4802) 7

%I M4802

%S 1,11,101,1111,10001,110011,1010101,11111111,100000001,1100000011,

%T 10100000101,111100001111,1000100010001,11001100110011,

%U 101010101010101,1111111111111111,10000000000000001,110000000000000011

%N Rows of Sierpiński's triangle (Pascal's triangle mod 2).

%C The rows of Sierpiński's triangle, read as numbers in binary representation, are products of distinct Fermat numbers, row 0 being the empty product. (See also the comment in A080176.)

%C Rows 1 to 31 are the binary representation of the 31 (2^5-1) nonempty products of distinct Fermat primes, giving the number of sides of constructible (with straightedge and compass) odd-sided polygons. - _Daniel Forgues_, Jun 21 2011

%C Sierpiński's triangles typically refer to any finite triangle with rows 0 to 2^n-1 so as to get complete triangles, with n at least 4 so as to show the fractal-like pattern of nested triangles. We may consider these finite Sierpiński's triangles as finite parts of "the" infinite Sierpiński's triangle, so to speak. - _Daniel Forgues_, Jun 22 2011

%C Also, binary representation of the n-th iteration of the "Rule 60" elementary cellular automaton starting with a single ON (black) cell. - _Robert Price_, Feb 21 2016

%D C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 353.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H N. J. A. Sloane, <a href="/A006943/b006943.txt">Table of n, a(n) for n = 0..200</a>

%H Antti Karttunen, <a href="http://www.fq.math.ca/Papers1/42-1/quartkarttunen01_2004.pdf">On Pascal's Triangle Modulo 2 in Fibonacci Representation</a> (Abstract). (For Denton Hewgill's identity)

%H OEIS Wiki, <a href="/wiki/Sierpinski&#39;s_triangle">Sierpinski's triangle</a>

%H V. Shevelev, <a href="http://arxiv.org/abs/1011.6083">On Stephan's conjectures concerning Pascal triangle modulo 2 and their polynomial generalization</a>, J. of Algebra Number Theory: Advances and Appl., 7 (2012), no.1, 11-29.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%F From _Daniel Forgues_, Jun 20-21 2011: (Start)

%F In the following formulas, [...]_2 means converted to base 2.

%F a(n) = [Sum_{i=0..n} (binomial(n,i) mod 2) 2^i]_2, n >= 0.

%F From row n, 0 <= n <= 2^k - 1, k >= 0, being

%F a(n) = [Product_{i=0..k-1} (F_i)^(alpha_i)]_2, alpha_i in {0, 1},

%F where for k = 0, we get the empty product, i.e., 1, giving a(0) = 1,

%F we induce from the triangle that row 2^k + n, 0 <= n <= 2^k - 1, is

%F a(2^k + n) = a(n)*[F_k]_2, k >= 0.

%F Denton Hewgill's identity: (Cf. links)

%F a(n) = [Product_{i>=0} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1.

%F a(0) = 1; a(n) = [Product_{i=0..floor(log_2(n))} (F_i)^(floor(n/2^i) mod 2)]_2, F_i = 2^(2^i)+1, n >= 1. (End)

%F From _Vladimir Shevelev_, Dec 26-27 2013: (Start)

%F sum_{n>=0} 1/a(n)^r = Product_{k>=0} (1 + 1/(10^(2^k)+1)^r),

%F sum_{n>=0} (-1)^A000120(n)/a(n)^r = Product_{k>=0} (1 - 1/(10^(2^k)+1)^r), where r>0 is a real number.

%F In particular,

%F sum_{n>=0} 1/a(n) = Product_{k>=0} (1 + 1/(10^(2^k)+1)) = 1.10182034...;

%F sum_{n>=0} (-1)^A000120(n)/a(n) = 0.9

%F a(2^n) = 10^(2^n)+1, n>=0.

%F Note that analogs of Stephan's limit formulas (see Shevelev link) reduce to the relations a(2^t*n+2^(t-1)) = 99*(10^(2^(t-1)+1))/(10^(2^(t-1))-1) * a(2^t*n+2^(t-1)-2), t>=2. In particular, for t=2,3,4, we have the following formulas:

%F a(4*n+2) = 101*a(4*n);

%F a(8*n+4) = 10001/101*a(8*n+2);

%F a(16*n+8)= 100000001/1010101*(16*n+6), etc. (End)

%F From _Tom Edgar_, Oct 11 2015: (Start)

%F a(2*n+1) = 11*a(2*n).

%F a(n) = Product_{b_j != 0}a(2^j) where n = Sum_{j>=0}b_j*2^j is the binary representation of n.

%F (End)

%e From _Daniel Forgues_, Jun 20 2011: (Start)

%e Terms as products of distinct Fermat numbers in binary representation (Cf. A080176 comment) (Cf. Sierpiński's triangle on OEIS Wiki):

%e a(0) = 1 = (empty product);

%e a(1) = 11 = F_0;

%e a(2) = 101 = F_1;

%e a(3) = 1111 = 11*101 = F_0*F_1;

%e a(4) = 10001 = F_2;

%e a(5) = 110011 = 11*10001 = F_0*F_2;

%e a(6) = 1010101 = 101*10001 = F_1*F_2;

%e a(7) = 11111111 = 11*101*10001 = F_0*F_1*F_2. (End)

%p A006943 := proc(n) local k; add((binomial(n,k) mod 2)*10^k, k=0..n); end;

%t f[n_] := FromDigits@ Mod[Binomial[n, Range[0, n]], 2]; Array[f, 17, 0] (* _Robert G. Wilson v_, Jun 26 2011 *)

%Y Cf. A080176 for Fermat numbers in binary representation.

%Y Cf. A001317 for the decimal representation of A006943.

%Y Cf. A249183.

%K nonn,easy,base

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Aug 21 2000

%E Edited by _Daniel Forgues_, Jun 20 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.