This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006928 a(n) = length of (n+1)st run, with initial terms 1, 2. (Formerly M0070) 24
 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Eric Weisstein's World of Mathematics, Kolakoski Sequence. FORMULA Essentially same as Kolakoski sequence A000002. EXAMPLE Start with [ 1,2 ]. a(1)=1, so the second run has length 1, so a(3) must be 1. a(2)=2, so the third run has length 2, so a(4) must also be 1 and a(5) must be 2. a(3)=1, so the 4th run has length 1, so a(6) must be 1; etc. (From Labos E.) MATHEMATICA a = {1, 2}; Do[AppendTo[a, 1+Mod[n, 2]], {n, 2, 80}, {i, a[[n]]}]; a (* Jean-François Alcover, Aug 09 2016, adapted from PARI *) PROG (PARI) a=[ 1, 2 ]; for(n=2, 80, for(i=1, a[ n ], a=concat(a, 1+(n%2)))); a CROSSREFS a(n)=A000002(n+1), n>1. Sequence in context: A248623 A086412 A192006 * A087890 A245077 A008676 Adjacent sequences:  A006925 A006926 A006927 * A006929 A006930 A006931 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 19:20 EDT 2018. Contains 313955 sequences. (Running on oeis4.)