%I M5483 #19 May 08 2023 09:36:16
%S 1,0,888,6432,36392,110720,336992,696512,1656202,2779392,5603904,
%T 8392864,15385200,20978048,35705728,46190016,74768920,92015360,
%U 142090040,169094496,255887536,293745408,427864224,485217472,696300464,765363200,1075013440,1170251136
%N Theta series of laminated lattice LAMBDA_13^{min}.
%C Theta series is an element of the space of modular forms on Gamma_1(32) with Kronecker character 8 in modulus 32, weight 13/2, and dimension 26 over the integers. - _Andy Huchala_, May 04 2023
%D J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 157.
%D E. C. Pervin, personal communication.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Andy Huchala, <a href="/A006915/b006915.txt">Table of n, a(n) for n = 0..20000</a>
%H G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/LAMBDA13_MIN.html">Home page for this lattice</a>
%H <a href="/index/La#laminated">Index entries for sequences related to laminated lattices</a>
%o (Magma)
%o prec := 80;
%o S := SymmetricMatrix([4,2,4,0,-2,4,0,-2,0,4,0,0,-2,0,4,-2,-2,0,0,0,4,0,0,0,0,0,-2,4,0,0,0,0,0,0,-2,4,0,0,0,0,1,-1,0,
%o 0,4,0,0,0,0,-1,0,0,0,0,4,-1,-2,1,1,0,1,0,-1,0,1,4,0,-1,0,0,1,0,1,0,0,1,1,4,0,0,0,0,0,0,0,0,0,-1,-1,0,4]);
%o L := LatticeWithGram(S);
%o M := ThetaSeriesModularFormSpace(L);
%o B := Basis(M,prec);
%o T<q> := ThetaSeries(L,52);
%o Coefficients(&+[Coefficients(T)[2*i-1] * B[i] : i in [1..25]]+Coefficients(T)[53]*B[26]); // _Andy Huchala_, May 04 2023
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E a(11)-a(27) from _Andy Huchala_, May 04 2023