This site is supported by donations to The OEIS Foundation.



Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006877 In the `3x+1' problem, these values for the starting value set new records for number of steps to reach 1.
(Formerly M0748)

%I M0748

%S 1,2,3,6,7,9,18,25,27,54,73,97,129,171,231,313,327,649,703,871,1161,

%T 2223,2463,2919,3711,6171,10971,13255,17647,23529,26623,34239,35655,

%U 52527,77031,106239,142587,156159,216367,230631,410011,511935,626331,837799

%N In the `3x+1' problem, these values for the starting value set new records for number of steps to reach 1.

%C Both the 3x+1 steps and the halving steps are counted.

%D Gonnet, Gaston H. "Computations on the 3n+ 1 conjecture." Maple Technical Newsletter 6 (1991): 18-22.

%D B. Hayes, Computer Recreations: On the ups and downs of hailstone numbers, Scientific American, 250 (No. 1, 1984), pp. 10-16.

%D D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 400.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006877/b006877.txt">Table of n, a(n) for n = 1..130</a> (from Eric Roosendaal's data)

%H T. Ahmed, H. Snevily, <a href="https://www.semanticscholar.org/paper/Are-There-an-Infinite-Number-of-Collatz-Integers-AHMED/2207919fcc0e2e4336faf345389c5dcd2daea50e">Are there an infinite number of Collatz integers?</a>, 2013.

%H J. C. Lagarias, <a href="http://www.cecm.sfu.ca/organics/papers/lagarias/paper/html/paper.html">The 3x+1 problem and its generalizations</a>, Amer. Math. Monthly, 92 (1985), 3-23.

%H G. T. Leavens and M. Vermeulen, <a href="/A006877/a006877_1.pdf">3x+1 search programs</a>, Computers and Mathematics with Applications, 24 (1992), 79-99. (Annotated scanned copy)

%H R. Munafo, <a href="http://www.mrob.com/pub/seq/wondrous.html">Integer Sequences Related to 3x+1 Collatz Iteration</a>

%H Eric Roosendaal, <a href="http://www.ericr.nl/wondrous/delrecs.html">3x+1 Delay Records</a>

%H R. G. Wilson, V, <a href="/A006877/a006877.pdf">Letter to N. J. A. Sloane with attachments, Jan. 1989</a>

%H R. G. Wilson, V, <a href="/A006884/a006884.pdf">Tables of A6877, A6884, A6885, Jan. 1989</a>

%H <a href="/index/Go#GEB">Index entries for sequences from "Goedel, Escher, Bach"</a>

%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>

%p A006877 := proc(n) local a,L; L := 0; a := n; while a <> 1 do if a mod 2 = 0 then a := a/2; else a := 3*a+1; fi; L := L+1; od: RETURN(L); end;

%t numberOfSteps[x0_] := Block[{x = x0, nos = 0}, While [x != 1 , If[Mod[x, 2] == 0 , x = x/2, x = 3*x + 1]; nos++]; nos]; a[1] = 1; a[n_] := a[n] = Block[{x = a[n-1] + 1}, record = numberOfSteps[x - 1]; While[ numberOfSteps[x] <= record, x++]; x]; A006877 = Table[ Print[a[n]]; a[n], {n, 1, 44}](* _Jean-Fran├žois Alcover_, Feb 14 2012 *)

%o (PARI) A006577(n)=my(s);while(n>1,n=if(n%2,3*n+1,n/2);s++);s

%o step(n,r)=my(t);forstep(k=bitor(n,1),2*n,2,t=A006577(k);if(t>r,return([k,t])));[2*n,r+1]

%o r=0;print1(n=1);for(i=1,100,[n,r]=step(n,r); print1(", "n)) \\ _Charles R Greathouse IV_, Apr 01 2013

%Y Cf. A006884, A006885, A006877, A006878, A033492.

%K nonn,nice,changed

%O 1,2

%A _N. J. A. Sloane_, _Robert Munafo_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 08:57 EST 2017. Contains 295076 sequences.