This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006875 Non-seed mu-atoms of period n in Mandelbrot set. (Formerly M0579) 3
 0, 1, 2, 3, 4, 7, 6, 12, 12, 23, 10, 51, 12, 75, 50, 144, 16, 324, 18, 561, 156, 1043, 22, 2340, 80, 4119, 540, 8307, 28, 17521, 30, 32928, 2096, 65567, 366, 135432, 36, 262179, 8250, 525348, 40, 1065093, 42, 2098263, 33876, 4194347, 46, 8456160, 420, 16779280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Definitions and Maxima source code on second Munafo web page. [From Robert Munafo, Dec 12 2009] REFERENCES B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183. R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Indranil Ghosh, Table of n, a(n) for n = 1..1000 R. P. Munafo, Mu-Ency - The Encyclopedia of the Mandelbrot Set R. Munafo, Enumeration of Features [From Robert Munafo, Dec 12 2009] FORMULA a(n) = sum_{d|n, d < n} (phi(n/d) * sum_{c|d} (mu(d/c) 2^(c-1))), where phi(n) and mu(n) are the Euler totient function (A000010) and Moebius function (A008683), respectively. - Cheng Zhang, Apr 03 2012 a(n) = A000740(n) - A006876(n). EXAMPLE Contribution from Robert Munafo, Dec 12 2009: (Start) For n=1 the only mu-atom is the large cardioid, which is a seed. For n=2 there is one, the large circular mu-atom centered at -1+0i, so a(2)=1. For n=3 there is a seed (cardioid) at -1.75+0i, which doesn't count, and two non-seeds ("circles") at approx. -0.1225+-0.7448i, so a(3)=2. (End) MATHEMATICA Table[Sum[EulerPhi[n/d] Sum[MoebiusMu[d/c] 2^(c - 1), {c, Divisors[d]}], {d, Drop[Divisors[n], -1]}], {n, 1, 100}] (* Cheng Zhang, Apr 03 2012 *) PROG (Python) from sympy import divisors, totient, mobius l=[0, 0] for n in xrange(2, 101):l+=[sum([totient(n/d)*sum([mobius(d/c)*2**(c - 1) for c in divisors(d)]) for d in divisors(n)[:-1]]),  ] print l[1:] # Indranil Ghosh, Jul 12 2017 CROSSREFS Cf. A000740, A006874, A006876, A118454. Sequence in context: A091204 A106446 A036467 * A064554 A290641 A265352 Adjacent sequences:  A006872 A006873 A006874 * A006876 A006877 A006878 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 15:29 EDT 2018. Contains 315392 sequences. (Running on oeis4.)