This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006857 a(n) = binomial(n+5,5) * binomial(n+5,4)/(n+5). (Formerly M4977) 10
 1, 15, 105, 490, 1764, 5292, 13860, 32670, 70785, 143143, 273273, 496860, 866320, 1456560, 2372112, 3755844, 5799465, 8756055, 12954865, 18818646, 26883780, 37823500, 52474500, 71867250, 97260345, 130179231, 172459665, 226296280, 294296640, 379541184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of permutations of n+5 that avoid the pattern 132 and have exactly 4 descents. Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005 Partial sums of A114242. - Peter Bala, Sep 21 2007 Dimensions of certain Lie algebra (see reference for precise definition). REFERENCES S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/1). S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 239. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Brandy Amanda Barnette, Counting Convex Sets on Products of Totally Ordered Sets, Masters Theses & Specialist Projects, Paper 1484, 2015. G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. G. Kreweras, Traitement simultané du "Problème de Young" et du "Problème de Simon Newcomb", Cahiers du Bureau Universitaire de Recherche Opérationnelle. Institut de Statistique, Université de Paris, 10 (1967), 23-31. [Annotated scanned copy] J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), 143-179. [Th. 7.3, case a=4] Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1). FORMULA From - Vladeta Jovovic, Jan 29 2003: (Start) a(n) = (4+n)!*(5+n)!/(2880*n!*(n+1)!). E.g.f.: 1/2880*(2880 + 40320*x + 109440*x^2 + 105120*x^3 + 45000*x^4 + 9504*x^5 + 1016*x^6 + 52*x^7 + x^8)*exp(x). (End) From Mike Zabrocki, Aug 26 2004: (Start) a(n) = C(n+5,8) + 6*C(n+6,8) + 6*C(n+7,8) + C(n+8,8). a(n) = C(n+4,4)*C(n+5,4)/5. O.g.f.: (1 + 6*x + 6*x^2 + x^3)/(1-x)^9. (End) From Wolfdieter Lang, Nov 13 2007: (Start) a(n) = A001263(n+5,5). Numerator polynomial of the g.f is the fourth row polynomial of the Narayana triangle. (End) a(n)= C(n+4,4)^2 - C(n+4,3)*C(n+4,5). - Gary Detlefs, Dec 05 2011 a(n) = Product_{i=1..4} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016 MAPLE a:=n->(n+1)*(n+2)^2*(n+3)^2*(n+4)^2*(n+5)/2880: seq(a(n), n=0..38); # Emeric Deutsch, Nov 18 2005 MATHEMATICA Table[Binomial[n+5, 5] * Binomial[n+5, 4]/(n+5), {n, 0, 50}] (* T. D. Noe, May 29 2012 *) PROG (PARI) a(n) = binomial(n+5, 5) * binomial(n+5, 4)/(n+5) \\ Charles R Greathouse IV, Jun 11 2015 (PARI) Vec((1+6*x+6*x^2+x^3)/(1-x)^9 + O(x^99)) \\ Altug Alkan, Sep 01 2016 CROSSREFS The expression binomial(m+n-1,n)^2-binomial(m+n,n+1)*binomial(m+n-2,n-1) for the values m = 2 through 14 produces the sequences A000012, A000217, A002415, A006542, A006857, A108679, A134288, A134289, A134290, A134291, A140925, A140935, A169937. 5th column of the table of Narayana numbers A001263. Cf. A002378, A114242. Sequence in context: A282350 A076767 A022610 * A000478 A055848 A202493 Adjacent sequences:  A006854 A006855 A006856 * A006858 A006859 A006860 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Jan 29 2003 Better description from Mike Zabrocki, Aug 26 2004 New definition from N. J. A. Sloane, Aug 28 2010 Zabrocki formulas offset corrected by Gary Detlefs, Dec 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.