The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006852 Step at which n is expelled in Kimberling's puzzle (A035486). (Formerly M5181) 29
 1, 25, 2, 4, 3, 22, 6, 8, 10, 5, 32, 83, 44, 14, 7, 66, 169, 11, 49595, 9, 69, 16, 24, 12, 43, 47, 7598, 15, 133, 109, 13, 198, 19, 33, 18, 23, 58, 65, 60, 93167, 68, 17, 1523, 39, 75, 20, 99, 34, 117, 123 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES R. K. Guy, Unsolved Problems Number Theory, Sect E35. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Enrique Pérez Herrero [1..11000], Goudout Élie [11001..20000], Table of n, a(n) for n = 1..20000 D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998. [From Enrique Pérez Herrero, Mar 28 2010] C. Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991. FORMULA a(n) >= floor((n+4)/3), n is expulsed from the unshuffled zone. - Enrique Pérez Herrero, Feb 25 2010 MATHEMATICA L[n_] := L[n] = ( i = Floor[(n + 4)/3]; j = Floor[(2*n + 1)/3]; While[(i != j), j = Max[2*(i - j), 2*(j - i) - 1]; i++ ]; Return[i]; ) A006852[n_] := L[n] (* Enrique Pérez Herrero, Mar 28 2010 *) PROG (PARI) A006852(n)= { my(i, j); i=floor((n+4)/3); j=floor((2*n+1)/3); while((i!=j), j=max(2*i-2*j, -1-2*i+2*j); i++; ); return(i); } \\ Enrique Pérez Herrero, Feb 25 2010 CROSSREFS Cf. A007063. Cf. A175312. - Enrique Pérez Herrero, Mar 28 2010 Sequence in context: A040616 A040620 A040621 * A040622 A040623 A317470 Adjacent sequences:  A006849 A006850 A006851 * A006853 A006854 A006855 KEYWORD nonn,nice AUTHOR EXTENSIONS 7593 corrected to 7598 by Hans Havermann, July 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 12:38 EDT 2021. Contains 342886 sequences. (Running on oeis4.)