This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006790 Exponentiation of e.g.f. for trees A000055(n-1). 1
 1, 2, 5, 15, 53, 211, 938, 4582, 24349, 139671, 858745, 5628789, 39145021, 287667582, 2226033629, 18082308403, 153770703339, 1365631349757, 12638233544989, 121640399661294, 1215438543434225, 12587691428792115 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 MAPLE with(numtheory): b:= proc(n) option remember; `if`(n<=1, n, add(add(d*       b(d), d=divisors(j))*b(n-j), j=1..n-1)/(n-1))     end: t:= proc(n) option remember; `if`(n=0, 1, b(n)-(add(b(k)       *b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)     end: g:= proc(n) option remember; `if`(n=0, 1, add(       binomial(n-1, j-1) *t(j-1) *g(n-j), j=1..n))     end: a:= n-> g(n+1): seq(a(n), n=0..30);  # Alois P. Heinz, Mar 16 2015 MATHEMATICA b[n_] := b[n] = If[n <= 1, n, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]; t[n_] := t[n] = If[n==0, 1, b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[ Mod[n, 2] == 0, b[n/2], 0])/2]; g[n_] := g[n] = If[n==0, 1, Sum[Binomial[n-1, j-1] *t[j-1]*g[n-j], {j, 1, n}]]; a[n_] := g[n+1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *) CROSSREFS Cf. A000055. Sequence in context: A134381 A107589 A249892 * A007548 A120567 A263779 Adjacent sequences:  A006787 A006788 A006789 * A006791 A006792 A006793 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 08:26 EST 2019. Contains 320159 sequences. (Running on oeis4.)