login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006770 Number of fixed n-celled polyominoes which need only touch at corners.
(Formerly M3565)
5
1, 4, 20, 110, 638, 3832, 23592, 147941, 940982, 6053180, 39299408, 257105146, 1692931066, 11208974860, 74570549714, 498174818986, 3340366308393 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also known as fixed polyplets. - David Bevan, Jul 28 2009

REFERENCES

D. H. Redelmeier, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..17.

M. F. Hasler, Illustration of the A006770(3)=20 fixed 3-polyplets, Sep 29 2014.

S. Mertens, Lattice animals: a fast enumeration algorithm and new perimeter polynomials, J. Stat. Phys. 58 (5-6) (1990) 1095-1108, Table 1.

Eric Weisstein's World of Mathematics, Polyplet.

EXAMPLE

a(2)=4: the two fixed dominoes and the two rotations of the polyplet consisting of two cells touching at a vertex. - David Bevan, Jul 28 2009

a(3)=20 counts 4 rotations (by 0°, 45°, 90°, 135°) of the straight ... trinomino, and 8 rotations (by multiples of 45°) of the L-shaped .: trinomino and the ..· 3-polyplet, cf. link to the image. - M. F. Hasler, Sep 30 2014

CROSSREFS

Cf. A030222 (free polyplets).

Sequence in context: A026127 A222205 A153295 * A158827 A026156 A025183

Adjacent sequences:  A006767 A006768 A006769 * A006771 A006772 A006773

KEYWORD

nonn,hard,more

AUTHOR

N. J. A. Sloane.

EXTENSIONS

One more term from Joseph Myers, Sep 26 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 24 14:47 EDT 2014. Contains 248516 sequences.