

A006744


Number of nstep selfavoiding walks on a Manhattan lattice.
(Formerly M1073)


2



1, 2, 4, 7, 13, 24, 44, 77, 139, 250, 450, 788, 1403, 2498, 4447, 7782, 13769, 24363, 43106, 75396, 132865, 234171, 412731, 721433, 1267901, 2228666, 3917654, 6843596, 12004150, 21059478, 36947904, 64506130, 112983428, 197921386, 346735329, 605046571, 1058544744, 1852200487
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

It seems that a(n) = A117633(n)/2 (the two sequences have similar names). Sequence A117633 is based on the paper by Malakis (1975).  Petros Hadjicostas, Jan 02 2019


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

H. Jamke, Table of n, a(n) for n=1..53 [From Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 13 2010]
D. BennettWood, J. L. Cardy, I. Enting, A. J. Guttmann and A. L. Owczarek, On the NonUniversality of a Critical Exponent for SelfAvoiding Walks, Nuc. Phys. B, 528, 533552, 1998. [From Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 13 2010]
A. Malakis, Selfavoiding walks on oriented square lattices, J. Phys. A: Math. Gen. 8 (1975), no 12, 18851898.
S. S. Manna and A. J. Guttmann, Kinetic growth walks and trails on oriented square lattices: Hull percolation and percolation hulls, J. Phys. A 22 (1989), 31133122.


CROSSREFS

Cf. A117633.
Sequence in context: A128742 A318748 A107281 * A054175 A305442 A000073
Adjacent sequences: A006741 A006742 A006743 * A006745 A006746 A006747


KEYWORD

nonn,walk


AUTHOR

Simon Plouffe


STATUS

approved



