login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006723 Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = ... = a(6) = 1.
(Formerly M2456)
11
1, 1, 1, 1, 1, 1, 1, 3, 5, 9, 17, 41, 137, 769, 1925, 7203, 34081, 227321, 1737001, 14736001, 63232441, 702617001, 8873580481, 122337693603, 1705473647525, 22511386506929, 251582370867257, 9254211194697641, 215321535159114017 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..100

R. H. Buchholz and R. L. Rathbun, An infinite set of Heron triangles with two rational medians, Amer. Math. Monthly, 104 (1997), 107-115.

S. Fomin and A. Zelevinsky, The Laurent phenomemon, arXiv:math/0104241 [math.CO], 2001.

David Gale, The strange and surprising saga of the Somos sequences, Math. Intelligencer 13(1) (1991), pp. 40-42.

R. W. Gosper and Richard C. Schroeppel, Somos Sequence Near-Addition Formulas and Modular Theta Functions, arXiv:math/0703470 [math.NT]

J. L. Malouf, An integer sequence from a rational recursion, Discr. Math. 110 (1992), 257-261.

J. Propp, The Somos Sequence Site

R. M. Robinson, Periodicity of Somos sequences, Proc. Amer. Math. Soc., 116 (1992), 613-619.

Vladimir Shevelev and Peter J. C. Moses, On a sequence of polynomials with hypothetically integer coefficients, arXiv preprint arXiv:1112.5715 [math.NT], 2011

M. Somos, Somos 7 Sequence

M. Somos, Brief history of the Somos sequence problem

A. van der Poorten, Hyperelliptic curves, continued fractions and Somos sequences

Eric Weisstein's World of Mathematics, Somos Sequence.

Index entries for two-way infinite sequences

FORMULA

a(6 - n) = a(n) for all n in Z.

a(n) = ((8-2*(-1)^n)*a(n-5)*a(n-3)-a(n-4)^2)/a(n-8). - Bruno Langlois, Aug 09 2016

MATHEMATICA

RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==1, a[n] == (a[n-1]a[n-6]+a[n-2]a[n-5]+a[n-3]a[n-4])/a[n-7]}, a, {n, 30}] (* Harvey P. Dale, Jan 19 2012 *)

PROG

(PARI)  {a(n) = my(v); if( n<0, n = 6-n); if( n<7, 1, n++; v = vector(n, k, 1); for( k=8, n, v[k] = (v[k-1] * v[k-6] + v[k-2] * v[k-5] + v[k-3] * v[k-4]) / v[k-7]); v[n])};

(Haskell)

a006723 n = a006723_list !! n

a006723_list = [1, 1, 1, 1, 1, 1, 1] ++

  zipWith div (foldr1 (zipWith (+)) (map b [1..3])) a006723_list

  where b i = zipWith (*) (drop i a006723_list) (drop (7-i) a006723_list)

-- Reinhard Zumkeller, Jan 22 2012

(Python)

from gmpy2 import divexact

A006723 = [1, 1, 1, 1, 1, 1, 1]

for n in range(7, 101):

....A006723.append(divexact(A006723[n-1]*A006723[n-6]+A006723[n-2]*A006723[n-5]+A006723[n-3]*A006723[n-4], A006723[n-7]))

# Chai Wah Wu, Sep 01 2014

CROSSREFS

Cf. A006720, A006721, A006722, A048736.

Cf. A078495.

Sequence in context: A018095 A003217 A178717 * A217097 A262451 A096390

Adjacent sequences:  A006720 A006721 A006722 * A006724 A006725 A006726

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from James A. Sellers, Aug 22 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 17 04:01 EDT 2017. Contains 293467 sequences.