%I M5156 #14 Aug 24 2020 11:33:50
%S 1,24,276,2024,10602,41952,128500,303048,517155,463496,-609684,
%T -3757992,-9340852,-14912280,-12957624,8669712,59707149,132295080,
%U 183499244,131501856,-113698752,-575221744,-1111921752,-1363192680,-824406065,889513752,3638565960,6404250248
%N G.f.: { ( Product_{j=1..infinity} (1-x^j) - 1 )/x }^24.
%D H. Gupta, On the coefficients of the powers of Dedekind's modular form, J. London Math. Soc., 39 (1964), 433-440.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H H. Gupta, <a href="/A001482/a001482.pdf">On the coefficients of the powers of Dedekind's modular form</a> (annotated and scanned copy)
%p t1:=mul(1-x^j,j=1..60); t2:=series(t1-1,x,60); t3:=series((t2/x)^24,x,60); seriestolist(%);
%o (PARI) a(n)=if(n<0,0,polcoeff(((eta(x+x^2*O(x^n))-1)/x)^24,n))
%K sign
%O 0,2
%A _N. J. A. Sloane_.
%E Entry revised Sep 11 2004