This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006645 Self-convolution of Pell numbers (A000129). 13
 0, 0, 1, 4, 14, 44, 131, 376, 1052, 2888, 7813, 20892, 55338, 145428, 379655, 985520, 2545720, 6547792, 16777993, 42847988, 109099078, 277040572, 701794187, 1773851304, 4474555476, 11266301976, 28318897549, 71070913036, 178106093666 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149. (The sequences w_n and z_n) LINKS Rigoberto Flórez, Robinson Higuita, Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018. M. Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8, section 3. Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1). FORMULA a(n) = Sum_{k=0..n} b(k)*b(n-k) with b(k) := A000129(k). a(n) = Sum_{k=0..floor((n-2)/2)} 2^(n-2)*(n-k-1)*binomial(n-2-k, k)*(1/4)^k, n >= 2. From Wolfdieter Lang, Apr 11 2000: (Start) a(n) = ((n-1)*P(n) + n*P(n-1))/4, P(n)=A000129(n). G.f.: (x/(1 - 2*x - x^2))^2. (End) a(n) = F'(n, 2), the derivative of the n-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006 EXAMPLE G.f. = x^2 + 4*x^3 + 14*x^4 + 44*x^5 + 131*x^6 + 376*x^7 + 1052*x^8 + ... MAPLE a:= n-> (Matrix(4, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -2, -4, -1][i] else 0 fi)^n) [1, 3]: seq (a(n), n=0..40); # Alois P. Heinz, Oct 28 2008 MATHEMATICA pell[n_] := Simplify[ ((1+Sqrt[2])^n - (1-Sqrt[2])^n)/(2*Sqrt[2])]; a[n_] := First[ ListConvolve[ pp = Array[pell, n+1, 0], pp]]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 21 2011 *) Table[(n Fibonacci[n - 1, 2] + (n - 1) Fibonacci[n, 2])/4, {n, 0, 30}] (* Vladimir Reshetnikov, May 08 2016 *) PROG (Sage) taylor( mul(x/(1 - 2*x - x^2) for i in range(1, 3)), x, 0, 28) # Zerinvary Lajos, Jun 03 2009 CROSSREFS a(n)= A054456(n-1, 1), n>=1 (second column of triangle), A054457. Sequence in context: A007466 A062109 A118042 * A094309 A000300 A005323 Adjacent sequences:  A006642 A006643 A006644 * A006646 A006647 A006648 KEYWORD nonn,easy,changed AUTHOR EXTENSIONS Sum formulas and cross-references added by Wolfdieter Lang, Aug 07 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)