login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006641 Class number of forms with discriminant -A003657(n), or equivalently class number of imaginary quadratic field with discriminant -A003657(n).
(Formerly M0112)
4
1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 3, 2, 4, 2, 1, 5, 2, 2, 4, 4, 3, 1, 4, 7, 5, 3, 4, 6, 2, 2, 8, 5, 6, 3, 8, 2, 6, 10, 4, 2, 5, 5, 4, 4, 3, 10, 2, 7, 6, 4, 10, 1, 8, 11, 4, 5, 8, 4, 2, 13, 4, 9, 4, 3, 6, 14, 4, 7, 5, 4, 12, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

REFERENCES

D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.

H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 514.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..3000

S. R. Finch, Class number theory

Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.

Eric Weisstein's World of Mathematics, Class Number

MATHEMATICA

FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric W. Weisstein *);

NumberFieldClassNumber@ Sqrt@ # & /@ Select[-Range@ 300, FundamentalDiscriminantQ]

PROG

(PARI) for(n=1, 300, if(isfundamental(-n), print1(quadclassunit(-n).no, ", "))) \\ Andrew Howroyd, Jul 23 2018

CROSSREFS

Sequence in context: A086520 A012265 A268835 * A191408 A115756 A067731

Adjacent sequences:  A006638 A006639 A006640 * A006642 A006643 A006644

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 14:13 EST 2019. Contains 319333 sequences. (Running on oeis4.)