|
|
A006624
|
|
Zarankiewicz's problem.
(Formerly M4600)
|
|
0
|
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
a(n) is the least k such that every n X (n+2) {0,1}-matrix with k ones contains an all ones 2 X 4 submatrix. - Sean A. Irvine, May 18 2017
|
|
REFERENCES
|
R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=2..9.
|
|
CROSSREFS
|
Sequence in context: A173792 A332588 A034703 * A184218 A272527 A272308
Adjacent sequences: A006621 A006622 A006623 * A006625 A006626 A006627
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
N. J. A. Sloane.
|
|
STATUS
|
approved
|
|
|
|