login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006564 Icosahedral numbers: n(5n^2 -5n + 2)/2.
(Formerly M4837)
10
1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, 6384, 7890, 9616, 11577, 13788, 16264, 19020, 22071, 25432, 29118, 33144, 37525, 42276, 47412, 52948, 58899, 65280, 72106, 79392, 87153, 95404, 104160, 113436, 123247, 133608 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Schlaefli symbol for this polyhedron: {3,5}

One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). [From Daniel Forgues, May 14 2010]

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

Hyun Kwang Kim, On Regular Polytope Numbers

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).

FORMULA

a(n) = C(n+2,3) + 8 C(n+1,3) + 6 C(n,3)

a(0)=1, a(1)=12, a(2)=48, a(3)=124, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4) [From Harvey P. Dale, May 26 2011]

G.f.: x*(6*x^2+8*x+1)/(x-1)^4 [From Harvey P. Dale, May 26 2011]

MAPLE

A006564:=(1+8*z+6*z**2)/(z-1)**4; [Conjectured by Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

Table[n (5n^2-5n+2)/2, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 12, 48, 124}, 40] (* Harvey P. Dale, May 26 2011 *)

PROG

(MAGMA) [(5*n^3-5*n^2+2*n)/2: n in [1..100]] [From Vincenzo Librandi, Nov 21 2010]

(Haskell)

a006564 n = n * (5 * n * (n - 1) + 2) `div` 2

-- Reinhard Zumkeller, Jun 16 2013

CROSSREFS

Cf. A000292, A000578, A005900, A006566.

Cf. A000566.

Sequence in context: A135453 A165280 A173548 * A239352 A059162 A190622

Adjacent sequences:  A006561 A006562 A006563 * A006565 A006566 A006567

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 28 15:16 EDT 2015. Contains 261125 sequences.